Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Front Vet Sci ; 11: 1351693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681848

RESUMO

Introduction: The utilization of fauna and fauna-based byproducts in ethnomedicinal usages has been a longstanding human activity, practiced across various cultures worldwide. This study focuses on investigating the utilization of animal-based traditional medicine by the people of Pakistan, specifically in the Gujranwala area. Methods: Data collection took place from January to September 2019 through interviews with local communities. Ethnomedicinal applications of animal products were analyzed using several indices, including Relative Frequency of Citation (RFC), Relative Popularity Level (RPL), Folk Use Value (FL), and Relative Occurrence Percentage (ROP). Results: The study identified the use of different body parts of 54 species of animals in treating various diseases and health issues. These include but are not limited to skin infections, sexual problems, pain management (e.g., in the backbone and joints), eyesight issues, immunity enhancement, cold, weakness, burns, smallpox, wounds, poisoning, muscular pain, arthritis, diabetes, fever, epilepsy, allergies, asthma, herpes, ear pain, paralysis, cough, swelling, cancer, bronchitis, girls' maturity, and stomach-related problems. Certain species of fauna were noted by informers with high "frequency of citation" (FC), ranging from 1 to 77. For instance, the black cobra was the most frequently cited animal for eyesight issues (FC = 77), followed by the domestic rabbit for burn treatment (FC = 67), and the Indus Valley spiny-tailed ground lizard for sexual problems (FC = 66). Passer domesticus and Gallus gallus were noted to have the highest ROP value of 99. Discussion: The findings of this study provide valuable preliminary insights for the conservation of fauna in the Gujranwala region of Punjab, Pakistan. Additionally, screening these animals for medicinally active compounds could potentially lead to the development of novel animal-based medications, contributing to both traditional medicine preservation and modern pharmaceutical advancements.

2.
Microsc Res Tech ; 87(7): 1479-1493, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38407375

RESUMO

For many years, the synthesis of graphene oxide (GO) had involved exfoliating graphite flakes, and the methods applied were expensive and time-consuming. Thus, an attempt had been made to create an inventive, less expensive method for the synthesis of GO using unrefined, raw carbon-containing material. Modified Hummer's method was used to prepare GO from banana peel. In addition, the metallic silver nanocomposite was also synthesized along with laoding of drug Rocephin where they interact with each other through electrostatic hydrogen bond interaction. The degree of crystallinity and the crystallite size were through x-ray diffraction (XRD) analysis and the crystallite size of AgNPs was found to be 40.40 nm. The scanning electron microscopy (SEM) analysis shows that the morphology of the GO gradually changes with the addition of AgNPs and Rocephin. A blue shift was seen in the absorbance maxima of the raw carbon upon the conjugation of Rocephin in UV analysis. The Fourier-transform infrared spectroscopy, and energy dispersive X-ray (EDX) spectroscopy were used to determine the chemical composition of the samples. Furthermore, a broad biological screening of the synthesized samples had been carried out following the total reducing power (TRP), total antioxidant capacity (TAC), antibacterial, antifungal, MTT (Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells) cell viability, brine shrimp lethality, and hemolytic protocols. Significant results were obtained, and the Rocephin-GO-AgNPs had depicted promising activity as compared with their counterparts. RESEARCH HIGHLIGHTS: The GO was prepared from the raw carbon extracted from banana peels and was used as a substrate for the synthesis Graphene oxide silver nanoparticles (GO-AgNPs) and Rocephin-loaded graphene oxide silver nanoparticles (Rocephin-GO-AgNPs) The structural and compositional analysis of the nanomaterial was carried out, and they were screened for several biomedical applications. The Rocephin-GO-AgNPs exhibit the highest activity as compared with their counterparts.


Assuntos
Grafite , Nanopartículas Metálicas , Nanocompostos , Prata , Grafite/química , Prata/química , Prata/farmacologia , Nanocompostos/química , Animais , Nanopartículas Metálicas/química , Humanos , Artemia/efeitos dos fármacos , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Microscopia Eletrônica de Varredura , Musa/química , Anti-Infecciosos/farmacologia
3.
J Biol Inorg Chem ; 28(8): 751-766, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955736

RESUMO

Three new dinuclear gold(I) complexes (1-3) containing a carbene (1,3-Bis(2,6-di-isopropylphenyl)imidazol-2-ylidene (IPr)) and diphosphane ligands [bis(1,2-diphenylphosphano)ethane (Dppe), bis(1,3-diphenylphosphano)propane (Dppp) and bis[2-(dicyclohexylphosphano)ethyl]amine (DCyPA)], were synthesized and characterized by elemental analysis and, ESI-MS, mid FT-IR and NMR spectroscopic methods. The structures of complexes 2 and 3 were determined by X-ray crystallography, which revealed that the complexes are dinuclear having gold(I) ions linearly coordinated. The anticancer activities of the complexes (1-3) were evaluated in lung (A549), breast (MC-F7), prostate (PC-3), osteosarcoma (MG-63) and ovarian (A2780 and A2780cis) cancer models. Growth inhibition by the new complexes was higher than cisplatin in all cell lines tested. The mechanism of action of complex 3 was investigated in A549 cells using 2-dimensional (2D) models and 3D-multicellular tumor spheroids. Treatment of A549 cells with complex 3 caused: the induction of apoptosis and the generation of reactive oxygen species; the cell cycle arrest in the G0/G1 phase; the inhibition of both the proteasome and the NF-kB activity; the down-regulation of lung cancer stem cell markers (NOTCH1, CD133, ALDH1 and CD44). Complex 3 was more active than cisplatin also in 3D models of A549 lung cancer cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Pulmonares , Neoplasias Ovarianas , Feminino , Masculino , Humanos , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Cisplatino/farmacologia , Complexo de Endopeptidases do Proteassoma/farmacologia , Ouro/farmacologia , Ouro/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Pulmão , Células-Tronco , Ligantes , Proliferação de Células
4.
J Neurol Sci ; 453: 120816, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827008

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease involving immune-mediated damage. Iron deposition in deep gray matter (DGM) structures like the thalamus and basal ganglia have been suggested to play a role in MS pathogenesis. Magnetic Resonance Imaging (MRI) imaging methods like T2 and T2* imaging, susceptibility-weighted imaging, and quantitative susceptibility mapping can track iron deposition storage in the brain primarily from ferritin and hemosiderin (paramagnetic iron storage proteins) with varying levels of tissue contrast and sensitivity. In this systematic review, we evaluated the role of DGM iron deposition as detected by MRI techniques in relation to MS-related neuroinflammation and its potential as a novel therapeutic target. We searched through PubMed, Embase, and Web of Science databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, against predetermined inclusion and exclusion criteria. We included 89 articles (n = 6630 patients), and then grouped them into different categories: i) methodological techniques to measure DGM iron, ii) cross-sectional and group comparison of DGM iron content, iii) longitudinal comparisons of DGM iron, iv) associations between DGM iron and other imaging and neurobiological markers, v) associations with disability, and vi) associations with cognitive impairment. The review revealed that iron deposition in DGM is independent yet concurrent with demyelination, and that these iron deposits contribute to MS-related cognitive impairment and disability. Variability in iron distributions appears to rely on a positive feedback loop between inflammation, and release of iron by oligodendrocytes. DGM iron seems to be a promising prognostic biomarker for MS pathophysiology.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Substância Cinzenta/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Estudos Transversais , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Inflamação/patologia , Ferro/metabolismo
5.
Cereal Res Commun ; : 1-24, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37361481

RESUMO

Over the past few decades, the amount of ultraviolet-B radiation (UV-B) reaching the earth's surface has been altered due to climate change and stratospheric ozone dynamics. This narrow but highly biologically active spectrum of light (280-320 nm) can affect plant growth and development. Depletion of ozone and climate change are interlinked in a very complicated manner, i.e., significantly contributing to each other. The interaction of climate change, ozone depletion, and changes in UV-B radiation negatively affects the growth, development, and yield of plants. Furthermore, this interaction will become more complex in the coming years. The ozone layer reduction is paving a path for UV-B radiation to impact the surface of the earth and interfere with the plant's normal life by negatively affecting the plant's morphology and physiology. The nature and degree of the future response of the agricultural ecosystem to the decreasing or increasing UV-B radiation in the background of climate change and ozone dynamics are still unclear. In this regard, this review aims to elucidate the effects of enhanced UV-B radiation reaching the earth's surface due to the depletion of the ozone layer on plants' physiology and the performance of major cereals.

6.
J Hazard Mater ; 454: 131468, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146338

RESUMO

Heavy metals (HMs), like vanadium (V), chromium (Cr), cadmium (Cd), and nickel (Ni) toxicity due to anthropogenic, impair plant growth and yield, which is a challenging issue for agricultural production. Melatonin (ME) is a stress mitigating molecule, which alleviates HM-induced phytotoxicity, but the possible underlying mechanism of ME functions under HMs' phytotoxicity is still unclear. Current study uncovered key mechanisms for ME-mediated HMs-stress tolerance in pepper. HMs toxicity greatly reduced growth by impeding leaf photosynthesis, root architecture system, and nutrient uptake. Conversely, ME supplementation markedly enhanced growth attributes, mineral nutrient uptake, photosynthetic efficiency, as measured by chlorophyll content, gas exchange elements, chlorophyll photosynthesis genes' upregulation, and reduced HMs accumulation. ME treatment showed a significant decline in the leaf/root V, Cr, Ni, and Cd concentration which was about 38.1/33.2%, 38.5/25.9%, 34.8/24.9%, and 26.6/25.1%, respectively, when compared with respective HM treatment. Furthermore, ME remarkably reduced the ROS (reactive oxygen species) accumulation, and reinstated the integrity of cellular membrane via activating antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase; POD, peroxidase; GST, glutathione S-transferase; DHAR, dehydroascorbate reductase; MDHAR, monodehydroascorbate reductase) and as well as regulating ascorbate-glutathione (AsA-GSH) cycle. Importantly, oxidative damage showed efficient alleviations through upregulating the genes related to key defense such as SOD, CAT, POD, GR, GST, APX, GPX, DHAR, and MDHAR; along with the genes related to ME biosynthesis. ME supplementation also enhanced the level of proline and secondary metabolites, and their encoding genes expression, which may control excessive H2O2 (hydrogen peroxide) production. Finally, ME supplementation enhanced the HM stress tolerance of pepper seedlings.


Assuntos
Melatonina , Metais Pesados , Melatonina/farmacologia , Cádmio/toxicidade , Cádmio/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Superóxido Dismutase/metabolismo , Cromo/metabolismo , Glutationa Redutase/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Plântula/metabolismo
7.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110867

RESUMO

Overexpression of the thymidine phosphorylase (TP) enzyme induces angiogenesis, which eventually leads to metastasis and tumor growth. The crucial role of TP in cancer development makes it an important target for anticancer drug discovery. Currently, there is only one US-FDA-approved drug, i.e., Lonsurf, a combination of trifluridine and tipiracil, for the treatment of metastatic colorectal cancer. Unfortunately, numerous adverse effects are associated with its use, such as myelosuppression, anemia, and neutropenia. Since the last few decades, the discovery of new, safe, and effective TP inhibitory agents has been rigorously pursued. In the present study, we evaluated a series of previously synthesized dihydropyrimidone derivatives 1-40 for their TP inhibitory potential. Compounds 1, 12, and 33 showed a good activity with IC50 = 314.0 ± 0.90, 303.5 ± 0.40, and 322.6 ± 1.60 µM, respectively. The results of mechanistic studies revealed that compounds 1, 12, and 33 were the non-competitive inhibitors. These compounds were also evaluated for cytotoxicity against 3T3 (mouse fibroblast) cells and were found to be non-cytotoxic. Finally, the molecular docking suggested the plausible mechanism of non-competitive inhibition of TP. The current study thus identifies some dihydropyrimidone derivatives as potential inhibitors of TP, which can be further optimized as leads for cancer treatment.


Assuntos
Inibidores Enzimáticos , Timidina Fosforilase , Animais , Camundongos , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Descoberta de Drogas
8.
Environ Res ; 231(Pt 1): 115941, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100366

RESUMO

Endocrine-disrupting chemicals (EDCs) are of interest in human physiopathology and have been extensively studied for their effects on the endocrine system. Research also focuses on the environmental impact of EDCs, including pesticides and engineered nanoparticles, and their toxicity to organisms. Green nanofabrication has surfaced as an environmentally conscious and sustainable approach to manufacture antimicrobial agents that can effectively manage phytopathogens. In this study, we examined the current understanding of the pathogenic activities of Azadirachta indica aqueous formulated green synthesized copper oxide nanoparticles (CuONPs) against phytopathogens. The CuONPs were analyzed and studied using a range of analytical and microscopic techniques, such as UV-visible spectrophotometer, Transmission electron microscope (TEM), Scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FTIR). The XRD spectral results revealed that the particles had a high crystal size, with an average size ranging from 40 to 100 nm. TEM and SEM images were utilized to verify the size and shape of the CuONPs, revealing that they varied between 20 and 80 nm. The existence of potential functional molecules involved in the reduction of the nanoparticles was confirmed by FTIR spectra and UV analysis. Biogenically synthesized CuONPs revealed significantly enhanced antimicrobial activities at 100 mg/L concentration in vitro by the biological method. The synthesized CuONPs at 500 µg/ml had a strong antioxidant activity which was examined through the free radicle scavenging method. Overall results of the green synthesized CuONPs have demonstrated significant synergetic effects in biological activities which can play a crucial impact in plant pathology against numerous phytopathogens.


Assuntos
Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Cobre/toxicidade , Cobre/química , Extratos Vegetais/química , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química
9.
Cureus ; 14(11): e31053, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36475147

RESUMO

Objective Our objective is to assess the diagnostic accuracy of contrast-enhanced magnetic resonance imaging (MRI) in identifying the depth of myometrial invasion and cervical stromal involvement in endometrial carcinoma (EC) along with nodal status and its correlation with surgical and histopathological (HP) findings. Materials and methods We performed a retrospective study on female patients at Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan. Patients with endometrial carcinoma (CA) were searched from the electronic record system, and a total of 188 patients fulfilling the study criteria were selected. All the patients were evaluated using a 1.5T MRI and underwent a hysterectomy. The outcome of preoperative MRI was correlated with histopathology results, keeping pathology as the gold standard. Results A total of 188 patients were included in the study, with a mean age of 56.67 ± 12.47 years. Of the patients, 72 (38.3%) were diagnosed with stage 1a. The second common stage was 1b, seen in 43 (22.9%) patients. It was found that the staging of endometrial CA on MRI and HP were significantly correlated for myometrial invasion (stage 1a and 1b), cervical stromal involvement (stage 2b), serosal and adnexal (stage 3a), vaginal (stage 3b), and nodal (stage 3c) involvement as shown by their p-values of <0.01. However, in cases of parametrial invasion (stage 3b), bladder involvement, and rectal involvement (stage 4), MRI showed decreased sensitivity as shown by their p-values of 0.833, 0.87, and 0.9, respectively. Conclusion Preoperative MRI can predict local disease and low-risk patients accurately, thereby helping in proper surgical planning and avoiding more extensive surgery such as lymphadenectomy in these patients.

10.
J Med Chem ; 65(21): 14424-14440, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36278959

RESUMO

A new series of seven gold(I) complexes (1-7) containing 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and phosphane ligands (L1-L7) were synthesized and evaluated for antitumor activity in ovarian cancer (OvCa) models. The synthesized complexes were characterized by IR, mass spectrometry and NMR spectroscopy, and complex 6 was characterized by XRD crystallography. The antiproliferative effect of the new complexes (1-7) was found to be higher than cisplatin and auranofin in OvCa cells sensitive and resistant to cisplatin. The anticancer activity of the most active complex 6 was investigated using OvCa in vitro models, including three-dimensional (3D) multicellular tumor spheroids and in vivo tumor xenografts. Both cisplatin and auranofin were used for comparative purposes. Complex 6 induced apoptosis, mitochondrial reactive oxygen species, and DNA damage; caused a G1 phase cell cycle arrest, inhibited proteasome activity, and cell migration; modified actin polymerization; and significantly inhibited OvCa murine xenografts. These promising results suggest further preclinical testing of these complexes for future applications.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Cisplatino/farmacologia , Auranofina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico
11.
Biomed Res Int ; 2022: 5707953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277895

RESUMO

The Peelu (Salvadora oleoides Decne.) fruit is well known for its nutritional and medicinal values. The current study analyzed the chemical composition of Salvadora oleoides fruit. Fresh Peelu fruits were harvested, and physicochemical properties, proximate composition, macro- and micronutrients, and phytochemical properties were determined. Moreover, ethanol and methanol fruit extract was analyzed for physicochemical properties. The Peelu fruit seemed to be a potential source of essential macro- ((nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)) and micronutrients (zinc (Zn), manganese (Mn), iron (Fe), and copper (Cu)). The fruit had significant biochemical properties (total soluble solids (TSS), total acidity (TA), and TSS : TA ratio) with appreciable moisture, crude fiber, and ash contents. The fruit extracts demonstrated significantly higher antioxidants and phenolics, ascorbic acid contents, and carotenoids. Phytochemical screening of fruit revealed the presence of coumarins, flavonoids, phlobatannins, tannins, and terpenoids. Physicochemical and sensory evaluation of extracts indicated its potential for further in vivo study trials. The Peelu fruit was found to be a good source of mineral nutrients, proximate contents, vitamins (ascorbic acid and carotenoid), phytochemicals (total phenolic sand antioxidant contents), and pharmaceutically important metabolites that can be used as functional drink.


Assuntos
Antioxidantes , Salvadoraceae , Antioxidantes/análise , Frutas/química , Metanol , Manganês , Cobre/análise , Magnésio , Cálcio/análise , Areia , Extratos Vegetais/química , Compostos Fitoquímicos/análise , Minerais/análise , Fenóis/análise , Vitaminas , Ácido Ascórbico , Carotenoides , Flavonoides/análise , Taninos/análise , Zinco/análise , Ferro/análise , Fósforo , Potássio , Cumarínicos , Etanol , Nitrogênio/análise
12.
Front Plant Sci ; 13: 979988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082298

RESUMO

The myeloblastosis (MYB) proteins perform key functions in mediating cadmium (Cd) tolerance of plants. Ipomoea aquatica has strong adaptability to Cd Stress, while the roles of the I. aquatica MYB gene family with respect to Cd stress are still unclear. Here, we identified a total of 183 MYB genes in the I. aquatica genome (laMYB), which were classified into 66 1R-type IaMYB, 112 2R-type IaMYB, four 3R-type IaMYB, and one 4R-type IaMYB based on the number of the MYB repeat in each gene. The analysis of phylogenetic tree indicated that most of IaMYB genes are associated with the diverse biological processes including defense, development and metabolism. Analysis of sequence features showed that the IaMYB genes within identical subfamily have the similar patterns of the motif distributions and gene structures. Analysis of gene duplication events revealed that the dispersed duplication (DSD) and whole-genome duplication (WGD) modes play vital roles in the expansion of the IaMYB gene family. Expression profiling manifests that approximately 20% of IaMYB genes had significant role in the roots of I. aquatica under Cd stress. Promoter profiling implied that the differentially expressed genes might be induced by environmental factors or inherent hormones and thereby execute their function in Cd response. Remarkably, the 2R-type IaMYB157 with abundant light-responsive element G-box and ABA-responsive element ABRE in its promoter region exhibited very strong response to Cd stress. Taken together, our findings provide an important candidate IaMYB gene for further deciphering the molecular regulatory mechanism in plant with respect to Cd stress.

13.
Animals (Basel) ; 12(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36009651

RESUMO

Amphibians and reptiles have interacted with humans for millennia. However, humans interact with amphibian and reptile species in different manners, which depend on their culture and traditions. This study was designed to better understand the interactions between amphibian and reptile species and their usage among the native peoples in the vicinity of the Jhelum and Chenab rivers, Pakistan. Information was collected through semi-structured interviews and questionnaires, and was analyzed by using different indices, including the frequency of citation, corrected fidelity level, fidelity level, relative importance level, and informant major ailment. Two amphibians and twenty-six reptile species were used in therapeutic medicine in the study area. Based on the cultural analysis, we found that Naja naja (black cobra) was highly cited across all cultural groups. A 100% Fidelity Level was calculated for the following species: Naja naja (eye infection), Varanus bengalensis (joint pain), Eurylepis taeniolatus (cataract), and Acanthodactylus cantoris (cancer). We found five endangered species in the study area, i.e., Aspideretes gangeticus, A. hurum, Chitra indica, Varanus flavescens, and Geoclemys hamiltonii, that were used to cure joint pain, muscle stretching and pain, backbone pain, paralysis, and psoriasis, respectively. Likewise, Lissemys punctata andersoni, a vulnerable species as labelled by the International Union for Conservation of Nature, was extensively used for the treatment of joint pain, body pain, paralysis, and arthritis in the study area. In terms of conservation, it is critical to protect the highly vulnerable and endangered species that are being used in therapeutic medicines. Our findings may be helpful for the conservation of amphibian and reptile species by helping to make an effective plan to prevent their extinction. The main threats to the diversity of amphibian and reptile species in the area are hunting, trading, and cultural use. These threats could potentially lead to the extinction of these species. Therefore, with the involvement of concerned authorities, e.g., local stakeholders, the Ministry of Climate Change, provincial wildlife departments, academia, and conservation managers, immediate conservation measures should be taken for the protection and sustainable utilization of medicinal species.

14.
J Ethnobiol Ethnomed ; 18(1): 57, 2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030230

RESUMO

BACKGROUND: Eastern Khyber Pakhtunkhwa is home to a vast range of medicinal and edible waterbird species due to its diverse geographical environment. Waterbird species have been used for various ailments and cultural practices since ancient times, while ethno-pharmacological applications and cultural uses of waterbird species in this area have seldom been documented. This study is the first ethnomedicinal and cultural assessment of waterbird species, and the first compilation and listing of all known data on these species in Eastern Khyber Pakhtunkhwa, Pakistan. METHODS: Interviews and questionnaires were used to collect data from native respondents (N = 100). To analyze the data, principal component analysis (PCA), relative frequency of citation (RFC), fidelity level (FL%), relative popularity level (RPL), rank order priority, and similarity index were used. RESULTS: In total, 64 waterbird species were utilized in cultural practices, of which 40 species are used to cure different infectious and chronic diseases such as cold, cough, flu, fever, respiratory disorders, asthma, TB, gastric ulcers, kidney stones, male impotency, obesity, paralysis, piles, cancer, arthritis, body pain, and weakness. PCA showed significant differences in the use of waterbird species among the local inhabitants of the study area, separated along the axis-2 (p < 0.05). The FL% of waterbird species varied from 12 to 100%. 100% FL was analyzed for four waterbird species, i.e., Charadrius mongolus (cold), Gallicrex cinerea (asthma), Anas platyrhynchos (cancer), and Esacus recurvirostris (body weakness). In this study, Mallard (Anas platyrhynchos) was the most popular species used in the healthcare system of Eastern Khyber Pakhtunkhwa, with high RFC (4.06), FL% (100), and RPL (1.0) values. CONCLUSION: We concluded that waterbird species are more used for medicine and food purposes in the study area. However, in vitro/in vivo assessment of biochemical activities of waterbird species with a maximum FL% might be significant to produce novel drugs. Recent research shows important ethno-ornithological information about native people and their links with waterbird species, which might be helpful for the sustainable use of waterbird diversity in the research area.


Assuntos
Asma , Neoplasias , Plantas Medicinais , Biodiversidade , Atenção à Saúde , Humanos , Masculino , Paquistão , Fitoterapia , Inquéritos e Questionários
15.
Front Plant Sci ; 13: 950392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923881

RESUMO

Globally, heavy metal pollution of soil has remained a problem for food security and human health, having a significant impact on crop productivity. In agricultural environments, nickel (Ni) is becoming a hazardous element. The present study was performed to characterize the toxicity symptoms of Ni in pepper seedlings exposed to different concentrations of Ni. Four-week-old pepper seedlings were grown under hydroponic conditions using seven Ni concentrations (0, 10, 20, 30, 50, 75, and 100 mg L-1 NiCl2. 6H2O). The Ni toxicity showed symptoms, such as chlorosis of young leaves. Excess Ni reduced growth and biomass production, root morphology, gas exchange elements, pigment molecules, and photosystem function. The growth tolerance index (GTI) was reduced by 88-, 75-, 60-, 45-, 30-, and 19% in plants against 10, 20, 30, 50, 75, and 100 mg L-1 Ni, respectively. Higher Ni concentrations enhanced antioxidant enzyme activity, ROS accumulation, membrane integrity [malondialdehyde (MDA) and electrolyte leakage (EL)], and metabolites (proline, soluble sugars, total phenols, and flavonoids) in pepper leaves. Furthermore, increased Ni supply enhanced the Ni content in pepper's leaves and roots, but declined nitrogen (N), potassium (K), and phosphorus (P) levels dramatically. The translocation of Ni from root to shoot increased from 0.339 to 0.715 after being treated with 10-100 mg L-1 Ni. The uptake of Ni in roots was reported to be higher than that in shoots. Generally, all Ni levels had a detrimental impact on enzyme activity and led to cell death in pepper seedlings. However, the present investigation revealed that Ni ≥ 30 mg L-1 lead to a deleterious impact on pepper seedlings. In the future, research is needed to further explore the mechanism and gene expression involved in cell death caused by Ni toxicity in pepper plants.

16.
J Hazard Mater ; 436: 129145, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739696

RESUMO

Although beneficial metalloid silicon (Si) has been proven to reduce the toxicity of several heavy metals, there is a lack of understanding regarding Si potential function in mitigating phytotoxicity induced by vanadium (V). In this study, effect of Si (1.5 mM) on growth, biomass production, V uptake, reactive oxygen species (ROS), methylglyoxal (MG) formation, selected antioxidants enzymes activities, glyoxalase enzymes under V stress (35 mg L-1) was investigated in hydroponic experiment. The results showed that V stress reduced rice growth, caused V accumulation in rice. Addition of Si to the nutritional medium increased plant growth, biomass yield, root length, root diameter, chlorophyll parameters, photosynthetic assimilation, ion leakage, antioxidant enzymes activities under V stress. Notably, Si sustained V-homeostasis and alleviated V caused oxidative stress by boosting ascorbate (AsA) levels and the activity of antioxidant enzymes in V stressed rice plants. Furthermore, Si protected rice seedlings against the harmful effects of methylglyoxal by increasing the activity of glyoxalase enzymes. Additionally, Si increased the expression of numerous genes involved in the detoxification of reactive oxygen species (e.g., OsCuZnSOD1, OsCaTB, OsGPX1, OsAPX1, OsGR2, and OsGSTU37) and methylglyoxal (e.g., OsGLYI-1 and OsGLYII-2). The findings supported that Si can be applied to plants to minimize the V availability to plant, and also induced V stress tolerance.


Assuntos
Lactoilglutationa Liase , Oryza , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Glutationa/metabolismo , Lactoilglutationa Liase/metabolismo , Oryza/metabolismo , Estresse Oxidativo , Aldeído Pirúvico/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Silício/farmacologia , Regulação para Cima , Vanádio/metabolismo , Vanádio/toxicidade
17.
Cureus ; 13(8): e17471, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34589364

RESUMO

Introduction Rectal cancer has become a major cause of mortality worldwide. Imaging has a primary role in staging and assessing the response to therapy. MRI is superior to all other modalities in local staging of the rectal tumor and in predicting tumor response. Pelvic MRI has an undeniable role in the therapeutic management of rectal cancer, particularly for the determination of the circumferential resection margin (CRM), evaluation of sphincter invasion, and assessment of the extramural vascular invasion. Post-chemoradiotherapy (CRT) staging aims at assessing treatment response and choosing methods for further treatment such as surgical resection or extended CRT. MRI with diffusion restriction is a non-invasive and useful tool for assessing the treatment response of locally advanced lower rectal cancer. It will reduce the burden of extensive abdominoperineal resection (APR) surgery in patients. Objective The purpose of this study was to determine the role of diffusion-weighted imaging (DWI) in the evaluation of post-treatment tumor response in rectal carcinoma. Materials and methods The study was approved by our institutional review board, which waived the requirement for informed consent. The clinical data of all the patients treated for rectal carcinoma at the Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore between February 1, 2014, and February 28, 2019, were retrospectively evaluated. The inclusion criteria were as follows: (1) patients with histopathologically proven rectal adenocarcinoma, (2) those who underwent APR before February 2019 at our hospital, and (3) those who underwent MRI including DWI/apparent diffusion coefficient (ADC) imaging before and after CRT. Those patients who had upfront surgery without neoadjuvant CRT and those who did not have MRI imaging with DWI/ADC were excluded from the study. Results A total of 200 patients who fulfilled the inclusion criteria were included in this study. Among those, 141 were males and 59 were females. On histology, 110 had moderately differentiated adenocarcinoma, 25 had well-differentiated adenocarcinoma, and 65 had poorly differentiated adenocarcinomas. Overall diagnostic accuracy of DWI MRI sequence was calculated to be 91%, while the sensitivity was 98.09%, specificity was 65.12%, positive predictive value was 91.12%, and negative predictive value was 90.32%. Conclusion DWI was proven to be very useful in the post-treatment evaluation of tumor response with very high diagnostic accuracy.

18.
Environ Sci Pollut Res Int ; 27(31): 38513-38536, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32770337

RESUMO

Carbon dioxide (CO2) is mainly universal greenhouse gas associated with climate change. However, beyond CO2, some other greenhouse gases (GHGs) like methane (CH4) and nitrous oxide (N2O), being two notable gases, contribute to global warming. Since 1900, the concentrations of CO2 and non-CO2 GHG emissions have been elevating, and due to the effects of the previous industrial revolution which is responsible for climate forcing. Globally, emissions of CO2, CH4, and N2O from agricultural sectors are increasing as around 1% annually. Moreover, deforestation also contributes 12-17% of total global GHGs. Perhaps, the average temperature is likely to increase globally, at least 2 °C by 2100-by mid-century. These circumstances are responsible for climate forcing, which is the source of various human health diseases and environmental risks. From agricultural soils, rhizospheric microbial communities have a significant role in the emissions of greenhouse gases. Every year, microbial communities release approximately 1.5-3 billion tons of carbon into the atmospheric environment. Microbial nitrification, denitrification, and respiration are the essential processes that affect the nitrogen cycle in the terrestrial environment. In the twenty-first century, climate change is the major threat faced by human beings. Climate change adversely influences human health to cause numerous diseases due to their direct association with climate change. This review highlights the different anthropogenic GHG emission sources, the response of microbial communities to climate change, climate forcing potential, and mitigation strategies through different agricultural management approaches and microbial communities.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Aquecimento Global , Efeito Estufa , Humanos , Metano/análise , Óxido Nitroso/análise , Solo
19.
Dalton Trans ; 49(22): 7355-7363, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32432621

RESUMO

Ovarian cancer is a highly aggressive disease which is treated by surgery and platinum chemotherapy. However, a significant proportion of treated patients develop resistance to platinum treatment resulting in tumor relapse. Acquired platinum resistance has been recently correlated with activation of pro-survival endoplasmic reticulum (ER) stress responses. We hypothesized that Au complexes that induce severe ER stress might counteract pro-survival cellular attempts leading to the ER stress-mediated apoptosis and reduced platinum resistance. In this work, we prepared a series of highly cytotoxic AuI-dialkyldithiocarbamate complexes and investigated their anticancer potential in ovarian cancer cells. Complexes demonstrated surprisingly low stability in chloroform, resulting in the formation of an Au chain polymer, which also displayed excellent cytotoxicity. Lead complex 2 induced oxidative stress and ER stress-mediated p53-independent apoptosis associated with PARP cleavage and cell cycle arrest at G2/M phase. Importantly, 2 caused the surface exposure of calreticulin (CRT), which is the first step in the activation of cellular immunogenic response.


Assuntos
Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/imunologia , Compostos Organoáuricos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Fosfinas/farmacologia , Tiocarbamatos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Compostos Organoáuricos/síntese química , Compostos Organoáuricos/química , Neoplasias Ovarianas/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosfinas/química , Tiocarbamatos/química , Células Tumorais Cultivadas
20.
South Med J ; 113(1): 37-41, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31897497

RESUMO

OBJECTIVES: Eosinophilic esophagitis (EoE) is characterized by upper gastrointestinal tract symptoms in association with esophageal mucosal biopsy specimens containing ≥15 intraepithelial eosinophils per high-power field. The etiology of EoE remains unclear, but an immunologic response to various foods and aeroallergens has been implicated. Seasonal variation has been reported in the diagnosis of EoE. The epidemiology and seasonal variation of EoE has never been studied in Oklahoma. The aim of this retrospective study was to determine epidemiology, clinical presentation, and seasonal variation of EoE in children seen from 2008 to 2015 at The Children's Hospital at Oklahoma University Medical Center (OUMC). METHODS: This was a single-center study involving the medical records of children aged 0 to 18 years with a diagnosis of EoE at OUMC in the Department of Pediatric Gastroenterology from January 2008 to December 2015. All charts with "eosinophilic esophagitis" in the diagnostic search history were reviewed. A diagnosis of EoE was defined as presence of ≥15 eosinophils per high-power field in the esophageal mucosal biopsy. The data extracted from the medical records included demographics, previous proton pump inhibitor use prediagnosis, clinical presentation, blood and skin allergy testing, and month of diagnosis. Seasons were distributed as spring (March-May), summer (June-August), fall (September-November), and winter (December-February). RESULTS: Seventy-nine patients with a diagnosis of EoE were seen at OUMC between 2008 and 2015. One patient was excluded because of insufficient medical records. The average age (±standard deviation) at diagnosis was 7.5 (±4.92) years with an age range of 1 to 17 years. χ2 analysis showed a significant sex distribution, with 72% males and 27% females (P = 0.0001). The most common presenting symptoms were dysphagia (35%) and vomiting (28%). When patients were grouped seasonally using the χ2 test, there was an increase in the diagnosis of EoE cases during the spring months when compared with other seasons (P = 0.0006). Forty-five percent of patients were diagnosed in the spring, 22% in the fall, 19% in the summer, and 14% in the winter. CONCLUSIONS: Our data demonstrate that there is a seasonal variation in the diagnosis of EoE, with more cases diagnosed in the spring months. These findings relate to the increase in aeroallergens and pollen distribution during the spring months in Oklahoma.


Assuntos
Esofagite Eosinofílica/epidemiologia , Estações do Ano , Adolescente , Alérgenos/análise , Criança , Pré-Escolar , Esofagite Eosinofílica/diagnóstico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Oklahoma/epidemiologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA