Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(723): eadd4897, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992152

RESUMO

Deficiency in the adipose-derived hormone leptin or leptin receptor signaling causes class 3 obesity in individuals with genetic loss-of-function mutations in leptin or its receptor LEPR and metabolic and liver disease in individuals with hypoleptinemia secondary to lipoatrophy such as in individuals with generalized lipodystrophy. Therapies that restore leptin-LEPR signaling may resolve these metabolic sequelae. We developed a fully human monoclonal antibody (mAb), REGN4461 (mibavademab), that activates the human LEPR in the absence or presence of leptin. In obese leptin knockout mice, REGN4461 normalized body weight, food intake, blood glucose, and insulin sensitivity. In a mouse model of generalized lipodystrophy, REGN4461 alleviated hyperphagia, hyperglycemia, insulin resistance, dyslipidemia, and hepatic steatosis. In a phase 1, randomized, double-blind, placebo-controlled two-part study, REGN4461 was well tolerated with an acceptable safety profile. Treatment of individuals with overweight or obesity with REGN4461 decreased body weight over 12 weeks in those with low circulating leptin concentrations (<8 ng/ml) but had no effect on body weight in individuals with higher baseline leptin. Furthermore, compassionate-use treatment of a single patient with atypical partial lipodystrophy and a history of undetectable leptin concentrations associated with neutralizing antibodies to metreleptin was associated with noteable improvements in circulating triglycerides and hepatic steatosis. Collectively, these translational data unveil an agonist LEPR mAb that may provide clinical benefit in disorders associated with relatively low leptin concentrations.


Assuntos
Resistência à Insulina , Lipodistrofia Generalizada Congênita , Animais , Camundongos , Humanos , Leptina/uso terapêutico , Ensaios de Uso Compassivo , Receptores para Leptina/metabolismo , Lipodistrofia Generalizada Congênita/tratamento farmacológico , Obesidade/tratamento farmacológico , Anticorpos/uso terapêutico , Peso Corporal
2.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34283813

RESUMO

Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct "modules" of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance-relevant brain regions.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/genética , Obesidade/metabolismo , Animais , Embrião de Mamíferos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Masculino , Camundongos , Obesidade/genética , RNA-Seq
3.
Nat Rev Mol Cell Biol ; 12(3): 141-51, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21346730

RESUMO

The cyclic AMP-responsive element-binding protein (CREB) is phosphorylated in response to a wide variety of signals, yet target gene transcription is only increased in a subset of cases. Recent studies indicate that CREB functions in concert with a family of latent cytoplasmic co-activators called cAMP-regulated transcriptional co-activators (CRTCs), which are activated through dephosphorylation. A dual requirement for CREB phosphorylation and CRTC dephosphorylation is likely to explain how these activator-co-activator cognates discriminate between different stimuli. Following their activation, CREB and CRTCs mediate the effects of fasting and feeding signals on the expression of metabolic programmes in insulin-sensitive tissues.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transativadores/metabolismo , Tecido Adiposo/metabolismo , Animais , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Glucagon/metabolismo , Gluconeogênese , Humanos , Hiperglicemia/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Longevidade/fisiologia , Modelos Biológicos , Músculo Esquelético/metabolismo , Fosforilação , Transdução de Sinais , Transativadores/química , Transativadores/genética
4.
Nat Med ; 14(10): 1112-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18758446

RESUMO

The adipocyte-derived hormone leptin maintains energy balance by acting on hypothalamic leptin receptors (Leprs) that act on the signal transducer and activator of transcription 3 (Stat3). Although disruption of Lepr-Stat3 signaling promotes obesity in mice, other features of Lepr function, such as fertility, seem normal, pointing to the involvement of additional regulators. Here we show that the cyclic AMP responsive element-binding protein-1 (Creb1)-regulated transcription coactivator-1 (Crtc1) is required for energy balance and reproduction-Crtc1(-/-) mice are hyperphagic, obese and infertile. Hypothalamic Crtc1 was phosphorylated and inactive in leptin-deficient ob/ob mice, while leptin administration increased amounts of dephosphorylated nuclear Crtc1. Dephosphorylated Crtc1 stimulated expression of the Cartpt and Kiss1 genes, which encode hypothalamic neuropeptides that mediate leptin's effects on satiety and fertility. Crtc1 overexpression in hypothalamic cells increased Cartpt and Kiss1 gene expression, whereas Crtc1 depletion decreased it. Indeed, leptin enhanced Crtc1 activity over the Cartpt and Kiss1 promoters in cells overexpressing Lepr, and these effects were disrupted by expression of a dominant-negative Creb1 polypeptide. As leptin administration increased recruitment of hypothalamic Crtc1 to Cartpt and Kiss1 promoters, our results indicate that the Creb1-Crtc1 pathway mediates the central effects of hormones and nutrients on energy balance and fertility.


Assuntos
Metabolismo Energético , Fertilidade , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Feminino , Kisspeptinas , Leptina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Fosforilação , Proteínas/genética , Proteínas/fisiologia , Fatores de Transcrição/genética
5.
Eur J Biochem ; 271(13): 2831-40, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15206948

RESUMO

Malonyl-CoA, a potent inhibitor of carnitine pamitoyl transferase-I (CPT-I), plays a pivotal role in fuel selection in cardiac muscle. Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malonyl-CoA, removes a potent allosteric inhibition on CPT-I and thereby increases fatty acid oxidation in the heart. Although MCD has several Ser/Thr phosphorylation sites, whether it is regulated by AMP-activated protein kinase (AMPK) has been controversial. We therefore overexpressed MCD (Ad.MCD) and constitutively active AMPK (Ad.CA-AMPK) in H9c2 cells, using an adenoviral gene delivery approach in order to examine if MCD is regulated by AMPK. Cells infected with Ad.CA-AMPK demonstrated a fourfold increase in AMPK activity as compared with control cells expressing green fluorescent protein (Ad.GFP). MCD activity increased 40- to 50-fold in Ad.MCD + Ad.GFP cells when compared with Ad.GFP control. Co-expressing AMPK with MCD further augmented MCD expression and activity in Ad.MCD + Ad.CA-AMPK cells compared with the Ad.MCD + Ad.GFP control. Subcellular fractionation further revealed that 54.7 kDa isoform of MCD expression was significantly higher in cytosolic fractions of Ad.MCD + Ad.CA-AMPK cells than of the Ad.MCD +Ad.GFP control. However, the MCD activities in cytosolic fractions were not different between the two groups. Interestingly, in the mitochondrial fractions, MCD activity significantly increased in Ad.MCD + Ad.CA-AMPK cells when compared with Ad.MCD + Ad.GFP cells. Using phosphoserine and phosphothreonine antibodies, no phosphorylation of MCD by AMPK was observed. The increase in MCD activity in mitochondria-rich fractions of Ad.MCD + Ad.CA-AMPK cells was accompanied by an increase in the level of the 50.7 kDa isoform of MCD protein in the mitochondria. This differential regulation of MCD expression and activity in the mitochondria by AMPK may potentially regulate malonyl-CoA levels at sites nearby CPT-I on the mitochondria.


Assuntos
Adenoviridae/genética , Adenilato Quinase/metabolismo , Carboxiliases/metabolismo , Técnicas de Transferência de Genes , Frações Subcelulares/enzimologia , Animais , Linhagem Celular , Fosforilação , Ratos
6.
J Biol Chem ; 278(37): 35826-36, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12842883

RESUMO

Phosphatidylethanolamine N-methyltransferase (PEMT) is a quatrotopic membrane protein that catalyzes the conversion of phosphatidylethanolamine to phosphatidylcholine through three sequential methylation reactions. Analysis of mice lacking a functional PEMT gene revealed a severe reduction in plasma homocysteine levels. Homocysteine is generated by the hydrolysis of S-adenosylhomocysteine, which is also a product of the PEMT reaction. To gain insight into the PEMT transmethylation reaction and the mechanism by which PEMT regulates homocysteine levels, we sought to define residues that are required for binding of the methyl group donor, S-adenosylmethionine (AdoMet). Bioinformatic analysis of the predicted amino acid sequence of human PEMT identified two putative AdoMet-binding motifs (98GXG100 and 180EE181). Site-directed mutagenesis experiments demonstrated the requirement for the conserved motifs in PEMT specific activity. Analysis of the AdoMet binding ability of mutant recombinant PEMT derivatives established that residues Gly100 and Glu180 are essential for binding of the AdoMet moiety. A significantly elevated KD with respect to AdoMet is observed following conservative mutagenesis of residues Gly98 (400 pmol) and Glu181 (666.7 pmol), relative to the unmodified enzyme (303.1 pmol), suggesting that these residues also participate in AdoMet binding. A model positions two separate AdoMet-binding motifs of PEMT in close proximity at the external leaflet of the endoplasmic reticulum membrane.


Assuntos
Metiltransferases/química , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Biologia Computacional/métodos , Sequência Conservada , Primers do DNA , Homocisteína/metabolismo , Humanos , Hidrólise , Metilação , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosfatidiletanolamina N-Metiltransferase , Reação em Cadeia da Polimerase , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA