Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943408

RESUMO

Plasma IL-6 is elevated after myocardial infarction (MI) and is associated with increased morbidity and mortality. Which cardiac cell type preferentially contributes to IL-6 expression and how its production is regulated are largely unknown. Here, we studied the cellular source and purinergic regulation of IL-6 formation in a murine MI model. We found that IL-6, measured in various cell types in post-MI hearts at the protein level and by quantitative PCR and RNAscope, was preferentially formed by cardiac fibroblasts (CFs). Single-cell RNA-Seq (scRNA-Seq) in infarcted mouse and human hearts confirmed this finding. We found that adenosine stimulated fibroblast IL-6 formation via the adenosine receptor A2bR in a Gq-dependent manner. CFs highly expressed Adora2b and rapidly degraded extracellular ATP to AMP but lacked CD73. In mice and humans, scRNA-Seq revealed that Adora2B was also mainly expressed by fibroblasts. We assessed global IL-6 production in isolated hearts from mice lacking CD73 on T cells (CD4-CD73-/-), a condition known to be associated with adverse cardiac remodeling. The ischemia-induced release of IL-6 was strongly attenuated in CD4-CD73-/- mice, suggesting adenosine-mediated modulation. Together, these findings demonstrate that post-MI IL-6 was mainly derived from activated CFs and was controlled by T cell-derived adenosine. We show that purinergic metabolic cooperation between CFs and T cells is a mechanism that modulates IL-6 formation by the heart and has therapeutic potential.


Assuntos
Fibroblastos , Interleucina-6 , Infarto do Miocárdio , Linfócitos T , Animais , Humanos , Camundongos , Adenosina/metabolismo , Fibroblastos/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Linfócitos T/metabolismo
2.
Front Immunol ; 13: 856230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464417

RESUMO

Beauvericin (BEA), a mycotoxin of the enniatin family produced by various toxigenic fungi, has been attributed multiple biological activities such as anti-cancer, anti-inflammatory, and anti-microbial functions. However, effects of BEA on dendritic cells remain unknown so far. Here, we identified effects of BEA on murine granulocyte-macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow derived dendritic cells (BMDCs) and the underlying molecular mechanisms. BEA potently activates BMDCs as signified by elevated IL-12 and CD86 expression. Multiplex immunoassays performed on myeloid differentiation primary response 88 (MyD88) and toll/interleukin-1 receptor (TIR) domain containing adaptor inducing interferon beta (TRIF) single or double deficient BMDCs indicate that BEA induces inflammatory cytokine and chemokine production in a MyD88/TRIF dependent manner. Furthermore, we found that BEA was not able to induce IL-12 or IFNß production in Toll-like receptor 4 (Tlr4)-deficient BMDCs, whereas induction of these cytokines was not compromised in Tlr3/7/9 deficient BMDCs. This suggests that TLR4 might be the functional target of BEA on BMDCs. Consistently, in luciferase reporter assays BEA stimulation significantly promotes NF-κB activation in mTLR4/CD14/MD2 overexpressing but not control HEK-293 cells. RNA-sequencing analyses further confirmed that BEA induces transcriptional changes associated with the TLR4 signaling pathway. Together, these results identify TLR4 as a cellular BEA sensor and define BEA as a potent activator of BMDCs, implying that this compound can be exploited as a promising candidate structure for vaccine adjuvants or cancer immunotherapies.


Assuntos
Micotoxinas , Receptor 4 Toll-Like , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Citocinas/metabolismo , Células Dendríticas , Depsipeptídeos , Células HEK293 , Humanos , Interleucina-12/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
3.
EBioMedicine ; 73: 103616, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34666225

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that leads to a breakdown of tolerance to self-antigens resulting in inflammation and organ damage. The anti-inflammatory activity of CD73-derived adenosine is well documented, however, its role in SLE pathogenesis is unknown. METHODS: Human peripheral blood immune cells were obtained from adult SLE patients (SLE) and healthy controls (HC). Expression and activity of purinergic ectoenzymes were assessed by qRT-PCR, flow cytometry and HPLC. Genes encoding purinergic ectoenzymes in SLE patients were analysed with targeted DNA sequencing. FINDINGS: Among circulating immune cells (both in HC and SLE), CD73 was most highly expressed on B cells, which was mirrored by high enzymatic activity only in HC. CD73 protein molecular weight was unchanged in SLE, however, the enzymatic activity of CD73 on SLE B cells was almost fully abolished. Accordingly, AMP accumulated in cultured SLE B cells. A similar discrepancy between protein expression and enzymatic activity was observed for NAD-degrading CD38 on SLE B cells. No differences were found in the rate of extracellular ATP degradation and expression of CD39, CD203a/c, and CD157. DNA sequencing identified no coding variants in CD73 in SLE patients. INTERPRETATION: We describe a new pathomechanism for SLE, by which inactivation of CD73 on B cells produces less anti-inflammatory adenosine, resulting in immune cell activation. CD73 inactivation was not due to genetic variation but may be related to posttranslational modification. FUNDING: The German Research Council, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Hiller Research Foundation, and Cardiovascular Research Institute Duesseldorf.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Trifosfato de Adenosina/metabolismo , Biomarcadores , Vias Biossintéticas , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Suscetibilidade a Doenças , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunofenotipagem , Leucócitos/imunologia , Leucócitos/metabolismo , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/terapia , Masculino , Índice de Gravidade de Doença
4.
Elife ; 102021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34152268

RESUMO

In the adult heart, the epicardium becomes activated after injury, contributing to cardiac healing by secretion of paracrine factors. Here, we analyzed by single-cell RNA sequencing combined with RNA in situ hybridization and lineage tracing of Wilms tumor protein 1-positive (WT1+) cells, the cellular composition, location, and hierarchy of epicardial stromal cells (EpiSC) in comparison to activated myocardial fibroblasts/stromal cells in infarcted mouse hearts. We identified 11 transcriptionally distinct EpiSC populations, which can be classified into three groups, each containing a cluster of proliferating cells. Two groups expressed cardiac specification markers and sarcomeric proteins suggestive of cardiomyogenic potential. Transcripts of hypoxia-inducible factor (HIF)-1α and HIF-responsive genes were enriched in EpiSC consistent with an epicardial hypoxic niche. Expression of paracrine factors was not limited to WT1+ cells but was a general feature of activated cardiac stromal cells. Our findings provide the cellular framework by which myocardial ischemia may trigger in EpiSC the formation of cardioprotective/regenerative responses.


Assuntos
Fibroblastos/metabolismo , Miocárdio/metabolismo , Pericárdio/fisiologia , Células Estromais/metabolismo , Transcriptoma , Animais , Perfilação da Expressão Gênica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA , Análise de Sequência de RNA , Análise de Célula Única , Proteínas WT1/metabolismo
5.
FASEB J ; 35(5): e21517, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33913581

RESUMO

Myocardial infarction (MI) activates the epicardium to form epicardial stromal cells (EpiSC) that reside in the epicardial hypoxic microenvironment. Paracrine factors secreted by EpiSC were shown to modulate the injury response of the post-MI heart and improve cardiac function. We have previously reported that the expression of the angiogenic cytokines vascular endothelial growth factor A (VEGFA) and IL-6 is strongly upregulated in EpiSC by adenosine acting via the A2B receptor (A2B R). Since tissue hypoxia is well known to be a potent stimulus for the generation of extracellular adenosine, the present study explored the crosstalk of A2B R activation and hypoxia-hypoxia-inducible factor 1 alpha (HIF-1α) signaling in cultured EpiSC, isolated from rat hearts 5 days after MI. We found substantial nuclear accumulation of HIF-1α after A2B R activation even in the absence of hypoxia. This normoxic HIF-1α induction was PKC-dependent and involved upregulation of HIF-1α mRNA expression. While the influence of hypoxia on adenosine generation and A2B R signaling was only minor, hypoxia and A2B R activation cumulatively increased VEGFA expression. Normoxic A2B R activation triggered an HIF-1α-associated cell-protective metabolic switch and reduced oxygen consumption. HIF-1α targets and negative regulators PHD2 and PHD3 were only weakly induced by A2B R signaling, which may result in a sustained HIF-1α activity. The A2B R-mediated normoxic HIF-1α induction was also observed in cardiac fibroblasts from healthy mouse hearts, suggesting that this mechanism is also functional in other A2B R-expressing cell types. Altogether, we identified A2B R-mediated HIF-1α induction as novel aspect in the HIF-1α-adenosine crosstalk, which modulates EpiSC activity and can amplify HIF-1α-mediated cardioprotection.


Assuntos
Cardiotônicos/metabolismo , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Infarto do Miocárdio/prevenção & controle , Pericárdio/metabolismo , Receptor A2B de Adenosina/metabolismo , Células Estromais/metabolismo , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Pericárdio/patologia , Ratos , Ratos Wistar , Receptor A2B de Adenosina/genética , Células Estromais/patologia
6.
Clin Res Cardiol ; 109(2): 137-160, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31144065

RESUMO

BACKGROUND: Extracellular nucleotide metabolism contributes to chronic inflammation, cell differentiation, and tissue mineralization by controlling nucleotide and adenosine concentrations and hence its purinergic effects. This study investigated location-specific changes of extracellular nucleotide metabolism in aortic valves of patients with calcific aortic valve disease (CAVD). Individual ecto-enzymes and adenosine receptors involved were analyzed together with correlation with CAVD severity and risk factors. RESULTS: Nucleotide and adenosine degradation rates were adversely modified on the aortic surface of stenotic valve as compared to ventricular side, including decreased ATP removal (1.25 ± 0.35 vs. 2.24 ± 0.61 nmol/min/cm2) and adenosine production (1.32 ± 0.12 vs. 2.49 ± 0.28 nmol/min/cm2) as well as increased adenosine deamination (1.28 ± 0.31 vs. 0.67 ± 0.11 nmol/min/cm2). The rates of nucleotide to adenosine conversions were lower, while adenosine deamination was higher on the aortic sides of stenotic vs. non-stenotic valve. There were no differences in extracellular nucleotide metabolism between aortic and ventricular sides of non-stenotic valves. Furthermore, nucleotide degradation rates, measured on aortic side in CAVD (n = 62), negatively correlated with echocardiographic and biochemical parameters of disease severity (aortic jet velocity vs. ATP hydrolysis: r = - 0.30, p < 0.05; vs. AMP hydrolysis: r = - 0.44, p < 0.001; valvular phosphate concentration vs. ATP hydrolysis: r = - 0.26, p < 0.05; vs. AMP hydrolysis: r = - 0.25, p = 0.05) while adenosine deamination showed positive correlation trend with valvular phosphate deposits (r = 0.23, p = 0.07). Nucleotide and adenosine conversion rates also correlated with CAVD risk factors, including hyperlipidemia (AMP hydrolysis vs. serum LDL cholesterol: r = - 0.28, p = 0.05; adenosine deamination vs. total cholesterol: r = 0.25, p = 0.05; LDL cholesterol: r = 0.28, p < 0.05; triglycerides: r = 0.32, p < 0.05), hypertension (adenosine deamination vs. systolic blood pressure: r = 0.28, p < 0.05) and thrombosis (ATP hydrolysis vs. prothrombin time: r = - 0.35, p < 0.01). Functional assays as well as histological and immunofluorescence, flow cytometry and RT-PCR studies identified all major ecto-enzymes engaged in nucleotide metabolism in aortic valves that included ecto-nucleotidases, alkaline phosphatase, and ecto-adenosine deaminase. We have shown that changes in nucleotide-converting ecto-enzymes were derived from their altered activities on valve cells and immune cell infiltrate. We have also demonstrated a presence of A1, A2a and A2b adenosine receptors with diminished expression of A2a and A2b in stenotic vs. non-stenotic valves. Finally, we revealed that augmenting adenosine effects by blocking adenosine deamination with deoxycoformycin decreased aortic valve thickness and reduced markers of calcification via adenosine-dependent pathways in a mouse model of CAVD. CONCLUSIONS: This work highlights profound changes in extracellular nucleotide and adenosine metabolism in CAVD. Altered extracellular nucleotide hydrolysis and degradation of adenosine in stenotic valves may affect purinergic responses to support a pro-stenotic milieu and valve calcification. This emphasizes a potential mechanism and target for prevention and therapy. .


Assuntos
Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Estenose da Valva Aórtica/enzimologia , Valva Aórtica/enzimologia , Valva Aórtica/patologia , Calcinose/enzimologia , Hidrolases/metabolismo , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Adulto , Idoso , Animais , Antígenos CD/metabolismo , Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/patologia , Apirase/metabolismo , Calcinose/diagnóstico por imagem , Calcinose/patologia , Células Cultivadas , Desaminação , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Hidrólise , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Purinérgicos P1/metabolismo , Índice de Gravidade de Doença
7.
Cardiovasc Res ; 116(5): 1047-1058, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504244

RESUMO

AIMS: Myocardial infarction (MI) leads to activation of cardiac fibroblasts (aCFs) and at the same time induces the formation of epicardium-derived cells at the heart surface. To discriminate between the two cell populations, we elaborated a fast and efficient protocol for the simultaneous isolation and characterization of aCFs and epicardial stromal cells (EpiSCs) from the infarcted mouse heart. METHODS AND RESULTS: For the isolation of aCFs and EpiSCs, infarcted hearts (50 min ischaemia/reperfusion) were digested by perfusion with a collagenase-containing medium for only 8 min, while EpiSCs were enzymatically removed from the outside by applying mild shear forces via a motor driven device. Cardiac fibroblasts (CFs) isolated from unstressed hearts served as control. Viability of isolated cells was >90%. Purity of EpiSCs was confirmed by immunofluorescence staining and qPCR of various mesenchymal markers including Wilms-tumor-protein-1. Microarray analysis of CFs, aCFs, and EpiSCs on day 5 post-MI revealed a unique gene expression pattern in the EpiSC fraction, which was enriched for epithelial markers and epithelial to mesenchymal transition-related genes. Compared to aCFs, 336 significantly altered gene entities were identified in the EpiSC fraction. qPCR analysis showed high expression of Serpinb2, Cxcl13, Adora2b, and Il10 in EpiSCs relative to CFs and aCFs. Furthermore, microarray data identified Ddah1 and Cemip to be highly up-regulated in aCFs compared to CFs. Immunostaining of the infarcted heart revealed a unique distribution of Dermokine, Aquaporin-1, Cytokeratin, Lipocalin2, and Periostin within the epicardial cell layer. CONCLUSIONS: We describe the simultaneous isolation of viable, purified fractions of aCFs and EpiSCs from the infarcted mouse heart. In this study, several differentially expressed markers for aCFs and EpiSCs were identified, underlining the importance of cell separation to study heterogeneity of stromal cells in the healing process after MI.


Assuntos
Separação Celular/métodos , Fibroblastos/patologia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Pericárdio/patologia , Células Estromais/patologia , Animais , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Genótipo , Preparação de Coração Isolado , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Pericárdio/metabolismo , Fenótipo , Células Estromais/metabolismo , Fatores de Tempo , Transcriptoma
8.
Am J Physiol Heart Circ Physiol ; 317(1): H190-H200, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050560

RESUMO

Although the cardioprotective effect of adenosine is undisputed, the role of the adenosine A2b receptor (A2bR) in ischemic cardiac remodeling is not defined. In this study we aimed to unravel the role A2bR plays in modulating the immune response and the healing mechanisms after myocardial infarction. Genetic and pharmacological (PSB603) inactivation of A2bR as well as activation of A2bR with BAY60-6583 does not alter cardiac remodeling of the infarcted (50-min left anterior descending artery occlusion/reperfusion) murine heart. Flow cytometry of immune cell subsets identified a significant increase in B cells, NK cells, CD8 and CD4 T cells, as well as FoxP3-expressing regulatory T cells in the injured heart in A2bR-deficient mice. Analysis of T-cell function revealed that expression and secretion of interleukin (IL)-2, interferon (IFN)γ, and tumor necrosis factor (TNF)α by T cells is under A2bR control. In addition, we found substantial cellular heterogeneity in the response of immune cells and cardiomyocytes to A2bR deficiency: while in the absence of A2bR, expression of IL-6 was greatly reduced in cardiomyocytes and immune cells except T cells, and expression of IL-1ß was strongly reduced in cardiomyocytes, granulocytes, and B cells as determined by quantitative PCR. Our findings indicate that A2bR signaling in the ischemic heart triggers substantial changes in cardiac immune cell composition of the lymphoid lineage and induces a profound cell type-specific downregulation of IL-6 and IL-1ß. This suggests the presence of a targetable adenosine-A2bR-IL-6-axis triggered by adenosine formed by the ischemic heart. NEW & NOTEWORTHY Genetic deletion and pharmacological inactivation/activation of A2bR does not alter cardiac remodeling after MI but is associated by compensatory upregulation of various pro- and anti-inflammatory immune cell subsets (B cells, NK cells, CD8 and CD4 T cells, regulatory T cells). In the inflamed heart, A2bR modulates the expression of IL-2, IFNγ, TNFα in T cells and of IL-6 in cardiomyocytes, monocytes, granulocytes and B cells. This suggests an important adenosine-IL-6 axis, which is controlled by A2bR via local adenosine.


Assuntos
Interleucina-6/metabolismo , Linfócitos/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Receptor A2B de Adenosina/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Feminino , Interleucina-1beta/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Receptor A2B de Adenosina/deficiência , Receptor A2B de Adenosina/genética , Transdução de Sinais , Remodelação Ventricular
9.
J Autoimmun ; 96: 94-103, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30201436

RESUMO

MircoRNAs (miRs) are small molecules that regulate gene expression at the posttranscriptional level. They have been proposed to be involved in the regulation of several immune responses including autoimmunity. Here, we identified miR-183 and miR-96 to be highly expressed in CD4+ T cells from peripheral blood of Graves' orbitopathy (GO) patients as well as in human and murine T cells upon activation in vitro. By using Luciferase-based binding assays, we identified EGR-1 as target for miR-183 and miR-96. Overexpression of miR-183 and miR-96 in murine CD4+ T cells by retroviral gene transfer resulted in decreased EGR-1 and PTEN expression, elevated Akt phosphorylation and enhanced proliferation. In contrast, treatment of murine CD4+ T cells with specific antagomiRs increased EGR-1 and PTEN expression and interfered with the proliferative activity upon stimulation in vitro. Strikingly, adoptive transfer of miR-183 and miR-96 overexpressing antigen-specific T cells into INS-HA/Rag2KO mice accelerated the development of autoimmune diabetes, whereas transfer of antagomiR-treated cells delayed the disease onset. These results indicate that miR-183 and miR-96 have the ability to regulate the strength of T cell activation and thereby the development and severity of T cell-dependent autoimmune diseases.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Diabetes Mellitus Tipo 1/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Oftalmopatia de Graves/genética , MicroRNAs/genética , Transferência Adotiva , Animais , Antagomirs/genética , Linfócitos T CD4-Positivos/transplante , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Regulação para Cima
10.
Circulation ; 136(3): 297-313, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28432149

RESUMO

BACKGROUND: T cells are required for proper healing after myocardial infarction. The mechanism of their beneficial action, however, is unknown. The proinflammatory danger signal ATP, released from damaged cells, is degraded by the ectonucleotidases CD39 and CD73 to the anti-inflammatory mediator adenosine. Here, we investigate the contribution of CD73-derived adenosine produced by T cells to cardiac remodeling after ischemia/reperfusion and define its mechanism of action. METHODS: Myocardial ischemia (50 minutes followed by reperfusion) was induced in global CD73-/- and CD4-CD73-/- mice. Tissue injury, T-cell purinergic signaling, cytokines, and cardiac function (magnetic resonance tomography at 9.4 T over 4 weeks) were analyzed. RESULTS: Changes in functional parameters of CD4-CD73-/- mice were identical to those in global CD73 knockouts (KOs). T cells infiltrating the injured heart significantly upregulated at the gene (quantitative polymerase chain reaction) and protein (enzymatic activity) levels critical transporters and enzymes (connexin43, connexin37, pannexin-1, equilibrative nucleoside transporter 1, CD39, CD73, ecto-nucleotide pyrophosphatase/phosphodiesterases 1 and 3, CD157, CD38) for the accelerated release and hydrolysis of ATP, cAMP, AMP, and NAD to adenosine. It is surprising that a lack of CD39 on T cells (from CD39-/- mice) did not alter ATP hydrolysis and very likely involves pyrophosphatases (ecto-nucleotide pyrophosphatase/phosphodiesterases 1 and 3). Circulating T cells predominantly expressed A2a receptor (A2aR) transcripts. After myocardial infarction, A2b receptor (A2bR) transcription was induced in both T cells and myeloid cells in the heart. Thus, A2aR and A2bR signaling may contribute to myocardial responses after myocardial infarction. In the case of T cells, this was associated with an accelerated secretion of proinflammatory and profibrotic cytokines (interleukin-2, interferon-γ, and interleukin-17) when CD73 was lacking. Cytokine production by T cells from peripheral lymph nodes was inhibited by A2aR activation (CGS-21680). The A2bR agonist BAY 60-6583 showed off-target effects. The adenosine receptor agonist NECA inhibited interferon-γ and stimulated interleukin-6 production, each of which was antagonized by a specific A2bR antagonist (PSB-603). CONCLUSIONS: This work demonstrates that CD73 on T cells plays a crucial role in the cardiac wound healing process after myocardial infarction. The underlying mechanism involves a profound increase in the hydrolysis of ATP/NAD and AMP, resulting primarily from the upregulation of pyrophosphatases and CD73. We also define A2bR/A2aR-mediated autacoid feedback inhibition of proinflammatory/profibrotic cytokines by T cell-derived CD73.


Assuntos
5'-Nucleotidase/metabolismo , Infarto do Miocárdio/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Linfócitos T/metabolismo , Cicatrização/fisiologia , 5'-Nucleotidase/imunologia , Animais , Movimento Celular/fisiologia , Reprogramação Celular/fisiologia , Feminino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Infarto do Miocárdio/imunologia , Receptor A2A de Adenosina/imunologia , Receptor A2B de Adenosina/imunologia , Linfócitos T/imunologia
11.
Circ Heart Fail ; 10(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28404626

RESUMO

BACKGROUND: Structural damage during heart failure development leads to increased infiltration of leukocytes. Because purinergic signaling on immune cells may impact on the inflammatory response, we evaluated the role of ecto-5'-nucleotidase (CD73) on the development of heart failure after transverse aortic constriction (TAC) using global and T-cell-specific CD73-/- mice. METHODS AND RESULTS: Leukocytes infiltrating the failing heart were analyzed by a multistep enzymatic procedure over a period of 16 weeks using fluorescence-activated cell sorting. TAC significantly enhanced the infiltration of leukocytes, especially T cells. The fraction of CD73 expressing cells increased over time exclusively on cytotoxic T cells, T-helper cells, and regulatory T cells. Cardiac function significantly declined in T-cell-specific CD4-Cre+/-CD73flox/flox mice identical to that observed in global CD73 mutants and was associated with enhanced fibrosis (collagen, laminin, vimentin, periostin). Expression analysis by quantitative reverse transcription polymerase chain reaction of extracellular purine degrading enzymes and P1 and P2 receptors on T cells isolated from the injured heart revealed profound upregulation of the enzymatic machinery for hydrolysis of extracellular adenosine triphosphate and nicotinamide adenine dinucleotide, both pathways converging in the formation of AMP and adenosine via CD73. Among the P1 receptors, only the A2a receptor was significantly upregulated after TAC. T cells isolated from TAC-treated hearts show enhanced production of proinflammatory cytokines (interleukin-3, interleukin-6, interleukin-13, interleukin-17, macrophage inflammatory proteins-1α, and macrophage inflammatory proteins-1ß) when CD73 was lacking. CONCLUSIONS: Our data provide first evidence that CD73 on T cells plays an important anti-inflammatory role in TAC-induced heart failure, which is associated with antifibrotic activity and reduced production of proinflammatory cytokines most likely by activation of the adenosine A2a receptor.


Assuntos
5'-Nucleotidase/metabolismo , Insuficiência Cardíaca/imunologia , Inflamação/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , 5'-Nucleotidase/deficiência , 5'-Nucleotidase/imunologia , Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Aorta/enzimologia , Colágeno/imunologia , Constrição , Modelos Animais de Doenças , Fibrose/enzimologia , Insuficiência Cardíaca/genética , Interleucina-3/metabolismo , Masculino , Camundongos , Camundongos Knockout
12.
Exp Hematol ; 45: 27-35.e1, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27693388

RESUMO

Recent clinical trials have indicated the high potential of regulatory T cells (Tregs) in the prevention of acute and chronic graft-versus-host disease (GvHD) after hematopoietic stem cell transplantation, but immune interventions require large numbers of Tregs. With respect to their limited natural occurrence, development and optimization of protocols for large-scale expansion of clinical-grade Tregs are essential if considered for therapeutic use. We compared different clinical-grade large-scale expansion protocols for repetitive transfer of large numbers of Tregs in clinical trials for the prevention of acute and/or chronic GvHD. Donor Tregs were isolated using magnetic-activated cell sorting (MACS) technology with good manufacturing practice-compliant devices. CD8 and CD19 depletion followed by CD25 enrichment resulted in the isolation of CD4+CD25+CD127- Tregs with a mean purity of 77%. Cell populations were expanded ex vivo using X-Vivo 15 (±rapamycin), TexMACS (±rapamycin), and CellGro DC (±rapamycin) in the presence of interleukin-2. The highest rates of expansion of clinical-grade Tregs were observed for X-Vivo 15 and CellGro DC without rapamycin in compared with all other expansion media tested. The suppressive capacity of the expanded Treg population was maintained under all conditions investigated. Our data suggest that expansion with CellGro provides data comparable to those obtained with TexMACS or X-Vivo 15 with rapamycin, although all three conditions did not provide the same propagation rate as X-Vivo 15 alone. With respect to functionality, phenotype, and stability, CellGro DC medium represents a reasonable alternative for good manufacturing practice-compatible large-scale ex vivo expansion.


Assuntos
Transferência Adotiva/métodos , Transferência Adotiva/normas , Técnicas de Cultura Celular por Lotes , Fidelidade a Diretrizes , Linfócitos T Reguladores , Adulto , Técnicas de Cultura Celular por Lotes/métodos , Técnicas de Cultura Celular por Lotes/normas , Biomarcadores , Movimento Celular , Separação Celular , Metilação de DNA , Feminino , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Masculino , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Adulto Jovem
13.
PLoS One ; 10(4): e0124927, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25928296

RESUMO

In our previous work we could identify defects in human regulatory T cells (Tregs) likely favoring the development of graft-versus-host disease (GvHD) following allogeneic stem cell transplantation (SCT). Treg transcriptome analyses comparing GvHD and immune tolerant patients uncovered regulated gene transcripts highly relevant for Treg cell function. Moreover, granzyme A (GZMA) also showed a significant lower expression at the protein level in Tregs of GvHD patients. GZMA induces cytolysis in a perforin-dependent, FAS-FASL independent manner and represents a cell-contact dependent mechanism for Tregs to control immune responses. We therefore analyzed the functional role of GZMA in a murine standard model for GvHD. For this purpose, adoptively transferred CD4+CD25+ Tregs from gzmA-/- mice were analyzed in comparison to their wild type counterparts for their capability to prevent murine GvHD. GzmA-/- Tregs home efficiently to secondary lymphoid organs and do not show phenotypic alterations with respect to activation and migration properties to inflammatory sites. Whereas gzmA-/- Tregs are highly suppressive in vitro, Tregs require GZMA to rescue hosts from murine GvHD, especially regarding gastrointestinal target organ damage. We herewith identify GZMA as critical effector molecule of human Treg function for gastrointestinal immune response in an experimental GvHD model.


Assuntos
Gastroenteropatias/imunologia , Gastroenteropatias/prevenção & controle , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Granzimas/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Movimento Celular/imunologia , Modelos Animais de Doenças , Gastroenteropatias/genética , Expressão Gênica , Doença Enxerto-Hospedeiro/genética , Granzimas/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunofenotipagem , Imunoterapia Adotiva , Tecido Linfoide/imunologia , Camundongos , Camundongos Knockout , Fenótipo
14.
J Exp Med ; 209(11): 2001-16, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23045606

RESUMO

Infiltration of Foxp3(+) regulatory T (T reg) cells is considered to be a critical step during tumor development and progression. T reg cells supposedly suppress locally an effective anti-tumor immune response within tumor tissues, although the precise mechanism by which T reg cells infiltrate the tumor is still unclear. We provide evidence that Neuropilin 1 (Nrp-1), highly expressed by Foxp3(+) T reg cells, regulates the immunological anti-tumor control by guiding T reg cells into the tumor in response to tumor-derived vascular endothelial growth factor (VEGF). We demonstrate for the first time that T cell-specific ablation of Nrp-1 expression results in a significant breakdown in tumor immune escape in various transplantation models and in a spontaneous, endogenously driven melanoma model associated with strongly reduced tumor growth and prolonged tumor-free survival. Strikingly, numbers of tumor-infiltrating Foxp3(+) T reg cells were significantly reduced accompanied by enhanced activation of CD8(+) T cells within tumors of T cell-specific Nrp-1-deficient mice. This phenotype can be reversed by adoptive transfer of Nrp-1(+) T reg cells from wild-type mice. Thus, our data strongly suggest that Nrp-1 acts as a key mediator of Foxp3(+) T reg cell infiltration into the tumor site resulting in a dampened anti-tumor immune response and enhanced tumor progression.


Assuntos
Melanoma Experimental/imunologia , Neuropilina-1/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/imunologia , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Ativação Linfocitária/imunologia , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neuropilina-1/deficiência , Neuropilina-1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Linfócitos T Reguladores/metabolismo , Carga Tumoral/genética , Carga Tumoral/imunologia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Fator A de Crescimento do Endotélio Vascular/deficiência , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia
15.
Eur J Immunol ; 39(1): 136-46, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19130550

RESUMO

Type I IFN play a very important role in immunity against viral infections. Murine type I IFN belongs to a multigene family including 14 IFN-alpha subtypes but the biological functions of IFN-alpha subtypes in retroviral infections are unknown. We have used the Friend retrovirus model to determine the anti-viral effects of IFN-alpha subtypes in vitro and in vivo. IFN-alpha subtypes alpha1, alpha4, alpha6 or alpha9 suppressed Friend virus (FV) replication in vitro, but differed greatly in their anti-viral efficacy in vivo. Treatment of FV-infected mice with the IFN-alpha subtypes alpha1, alpha4 or alpha9, but not alpha6 led to a significant reduction in viral loads. Decreased splenic viral load after IFN-alpha1 treatment correlated with an expansion of activated FV-specific CD8(+) T cells and NK cells into the spleen, whereas in IFN-alpha4- and -alpha9-treated mice it exclusively correlated with the activation of NK cells. The results demonstrate the distinct anti-retroviral effects of different IFN-alpha subtypes, which may be relevant for new therapeutic approaches.


Assuntos
Antirretrovirais/farmacologia , Vírus da Leucemia Murina de Friend/efeitos dos fármacos , Interferon-alfa/imunologia , Interferon-alfa/farmacologia , Animais , Antirretrovirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Feminino , Vírus da Leucemia Murina de Friend/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Leucemia Experimental/imunologia , Camundongos , Infecções por Retroviridae/imunologia , Infecções Tumorais por Vírus/imunologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA