Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Infect Dis ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385222

RESUMO

Human immunodeficiency virus type 1 (HIV-1) disease manifestations differ between cisgender women and men, including better control of viral replication during primary infection and less frequent residual HIV-1 replication on antiretroviral therapy (ART) in cisgender women with HIV-1 (WWH). Investigating plasmacytoid dendritic cell (pDC) functions and HIV-1 reservoir sizes in 20 WWH on stable ART, we observed inverse correlations between interferon-α and tumor necrosis factor responses of pDCs to Toll-like receptor 7/8 stimulation and intact/total proviral HIV-1 DNA levels. Additionally, ISG15 mRNA levels in peripheral blood mononuclear cells correlated with cytokine responses of pDCs. These findings demonstrate an association between higher type I interferon responses and lower HIV-1 reservoir sizes in WWH on ART, warranting studies to identify the underlying mechanisms.

2.
Gastroenterology ; 165(4): 946-962.e13, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454979

RESUMO

BACKGROUND & AIMS: Ulcerative colitis (UC) is characterized by severe inflammation and destruction of the intestinal epithelium, and is associated with specific risk single nucleotide polymorphisms in HLA class II. Given the recently discovered interactions between subsets of HLA-DP molecules and the activating natural killer (NK) cell receptor NKp44, genetic associations of UC and HLA-DP haplotypes and their functional implications were investigated. METHODS: HLA-DP haplotype and UC risk association analyses were performed (UC: n = 13,927; control: n = 26,764). Expression levels of HLA-DP on intestinal epithelial cells (IECs) in individuals with and without UC were quantified. Human intestinal 3-dimensional (3D) organoid cocultures with human NK cells were used to determine functional consequences of interactions between HLA-DP and NKp44. RESULTS: These studies identified HLA-DPA1∗01:03-DPB1∗04:01 (HLA-DP401) as a risk haplotype and HLA-DPA1∗01:03-DPB1∗03:01 (HLA-DP301) as a protective haplotype for UC in European populations. HLA-DP expression was significantly higher on IECs of individuals with UC compared with controls. IECs in human intestinal 3D organoids derived from HLA-DP401pos individuals showed significantly stronger binding of NKp44 compared with HLA-DP301pos IECs. HLA-DP401pos IECs in organoids triggered increased degranulation and tumor necrosis factor production by NKp44+ NK cells in cocultures, resulting in enhanced epithelial cell death compared with HLA-DP301pos organoids. Blocking of HLA-DP401-NKp44 interactions (anti-NKp44) abrogated NK cell activity in cocultures. CONCLUSIONS: We identified an UC risk HLA-DP haplotype that engages NKp44 and activates NKp44+ NK cells, mediating damage to intestinal epithelial cells in an HLA-DP haplotype-dependent manner. The molecular interaction between NKp44 and HLA-DP401 in UC can be targeted by therapeutic interventions to reduce NKp44+ NK cell-mediated destruction of the intestinal epithelium in UC.


Assuntos
Colite Ulcerativa , Antígenos HLA-DP , Humanos , Antígenos HLA-DP/genética , Colite Ulcerativa/genética , Células Matadoras Naturais , Haplótipos , Células Epiteliais
3.
Mucosal Immunol ; 16(4): 408-421, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37121384

RESUMO

Early life is characterized by extraordinary challenges, including rapid tissue growth and immune adaptation to foreign antigens after birth. During this developmental stage, infants have an increased risk of immune-mediated diseases. Here, we demonstrate that tissue-resident, interleukin (IL)-13- and IL-4-producing group 2 innate lymphoid cells (ILC2s) are enriched in human infant intestines compared to adult intestines. Organoid systems were employed to assess the role of infant intestinal ILC2s in intestinal development and showed that IL-13 and IL-4 increased epithelial cell proliferation and skewed cell differentiation toward secretory cells. IL-13 furthermore upregulated the production of mediators of type-2 immunity by infant intestinal epithelial cells, including vascular endothelial growth factor-A and IL-26, a chemoattractant for eosinophils. In line with these in vitro findings increased numbers of eosinophils were detected in vivo in infant intestines. Taken together, ILC2s are enriched in infant intestines and can support intestinal development while inducing an epithelial secretory response associated with type 2 immune-mediated diseases.


Assuntos
Imunidade Inata , Interleucina-13 , Adulto , Humanos , Lactente , Linfócitos , Fator A de Crescimento do Endotélio Vascular , Interleucina-4 , Intestinos , Interleucina-33 , Citocinas/metabolismo
4.
Front Immunol ; 14: 1117320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845105

RESUMO

The crosstalk between NK cells and their surrounding environment is enabled through activating and inhibitory receptors, which tightly control NK cell activity. The co-inhibitory receptor TIGIT decreases NK cell cytotoxicity and is involved in NK cell exhaustion, but has also been associated with liver regeneration, highlighting that the contribution of human intrahepatic CD56bright NK cells in regulating tissue homeostasis remains incompletely understood. A targeted single-cell mRNA analysis revealed distinct transcriptional differences between matched human peripheral blood and intrahepatic CD56bright NK cells. Multiparameter flow cytometry identified a cluster of intrahepatic NK cells with overlapping high expression of CD56, CD69, CXCR6, TIGIT and CD96. Intrahepatic CD56bright NK cells also expressed significantly higher protein surface levels of TIGIT, and significantly lower levels of DNAM-1 compared to matched peripheral blood CD56bright NK cells. TIGIT+ CD56bright NK cells showed diminished degranulation and TNF-α production following stimulation. Co-incubation of peripheral blood CD56bright NK cells with human hepatoma cells or primary human hepatocyte organoids resulted in migration of NK cells into hepatocyte organoids and upregulation of TIGIT and downregulation of DNAM-1 expression, in line with the phenotype of intrahepatic CD56bright NK cells. Intrahepatic CD56bright NK cells represent a transcriptionally, phenotypically, and functionally distinct population of NK cells that expresses higher levels of TIGIT and lower levels of DNAM-1 than matched peripheral blood CD56bright NK cells. Increased expression of inhibitory receptors by NK cells within the liver environment can contribute to tissue homeostasis and reduction of liver inflammation.


Assuntos
Células Matadoras Naturais , Fígado , Humanos , Antígeno CD56/metabolismo , Células Matadoras Naturais/metabolismo , Fígado/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Citometria de Fluxo
5.
Biol Sex Differ ; 14(1): 11, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814288

RESUMO

BACKGROUND: The clinical course and outcome of many diseases differ between women and men, with women experiencing a higher prevalence and more severe pathogenesis of autoimmune diseases. The precise mechanisms underlying these sex differences still remain to be fully understood. IRF5 is a master transcription factor that regulates TLR/MyD88-mediated responses to pathogen-associated molecular patterns (PAMPS) in DCs and B cells. B cells are central effector cells involved in autoimmune diseases via the production of antibodies and pro-inflammatory cytokines as well as mediating T cell help. Dysregulation of IRF5 expression has been reported in autoimmune diseases, including systemic lupus erythematosus, primary Sjögren syndrome, and rheumatoid arthritis. METHODS: In the current study, we analyzed whether the percentage of IRF5 positive B cells differs between women and men and assessed the resulting consequences for the production of inflammatory cytokines after TLR7- or TLR9 stimulation. RESULTS: The percentage of IRF5 positive B cells was significantly higher in B cells of women compared to men in both unstimulated and TLR7- or TLR9-stimulated B cells. B cells of women produced higher levels of TNF-α in response to TLR9 stimulation. CONCLUSIONS: Taken together, our data contribute to the understanding of sex differences in immune responses and may identify IRF5 as a potential therapeutic target to reduce harmful B cell-mediated immune responses in women.


Assuntos
Linfócitos B , Fatores Reguladores de Interferon , Fator de Necrose Tumoral alfa , Feminino , Humanos , Masculino , Citocinas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Caracteres Sexuais , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linfócitos B/metabolismo
6.
Cell Mol Immunol ; 20(2): 201-213, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36600048

RESUMO

Gastrointestinal infections are a major cause for serious clinical complications in infants. The induction of antibody responses by B cells is critical for protective immunity against infections and requires CXCR5+PD-1++ CD4+ T cells (TFH cells). We investigated the ontogeny of CXCR5+PD-1++ CD4+ T cells in human intestines. While CXCR5+PD-1++ CD4+ T cells were absent in fetal intestines, CXCR5+PD-1++ CD4+ T cells increased after birth and were abundant in infant intestines, resulting in significant higher numbers compared to adults. These findings were supported by scRNAseq analyses, showing increased frequencies of CD4+ T cells with a TFH gene signature in infant intestines compared to blood. Co-cultures of autologous infant intestinal CXCR5+PD-1+/-CD4+ T cells with B cells further demonstrated that infant intestinal TFH cells were able to effectively promote class switching and antibody production by B cells. Taken together, we demonstrate that functional TFH cells are numerous in infant intestines, making them a promising target for oral pediatric vaccine strategies.


Assuntos
Linfócitos T CD4-Positivos , Receptor de Morte Celular Programada 1 , Linfócitos T Auxiliares-Indutores , Adulto , Criança , Humanos , Lactente , Linfócitos B , Receptores CXCR5 , Linfócitos T CD4-Positivos/imunologia
7.
Cytokine ; 162: 156109, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529029

RESUMO

The SARS-CoV-2 infection leads to enhanced inflammation driven by innate immune responses. Upon TLR7 stimulation, dendritic cells (DC) mediate the production of inflammatory cytokines, and in particular of type I interferons (IFN). Especially in DCs, IRF5 is a key transcription factor that regulates pathogen-induced immune responses via activation of the MyD88-dependent TLR signaling pathway. In the current study, the frequencies of IRF5+ DCs and the association with innate cytokine responses in SARS-CoV-2 infected individuals with different disease courses were investigated. In addition to a decreased number of mDC and pDC subsets, we could show reduced relative IRF5+ frequencies in mDCs of SARS-CoV-2 infected individuals compared with healthy donors. Functionally, mDCs of COVID-19 patients produced lower levels of IL-6 in response to in vitro TLR7 stimulation. IRF5+ mDCs more frequently produced IL-6 and TNF-α compared to their IRF5- counterparts upon TLR7 ligation. The correlation of IRF5+ mDCs with the frequencies of IL-6 and TNF-α producing mDCs were indicators for a role of IRF5 in the regulation of cytokine responses in mDCs. In conclusion, our data provide further insights into the underlying mechanisms of TLR7-dependent immune dysfunction and identify IRF5 as a potential immunomodulatory target in SARS-CoV-2 infection.


Assuntos
COVID-19 , Citocinas , Humanos , Citocinas/metabolismo , Receptor 7 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Fatores Reguladores de Interferon/metabolismo , Células Dendríticas
8.
Front Immunol ; 14: 1277967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162640

RESUMO

Natural killer (NK) cells are important antiviral effector cells and also involved in tumor clearance. NK cells express IFNAR, rendering them responsive to Type I IFNs. To evaluate Type I IFN-mediated modulation of NK cell functions, individual Type I IFNs subtypes were assessed for their ability to activate NK cells. Different Type I IFN subtypes displayed a broad range in the capacity to induce and modulate NK cell activation and degranulation, measured by CD69 and CD107a expression in response to leukemia cell line K562. When including biological sex as a variable in the analysis, transwell co-cultures of NK cells with either male- or female-derived PBMCs or pDCs stimulated with the TLR7/8 agonist CL097 showed that NK cells were more activated by CL097-stimulated cells derived from females. These sex-specific differences were linked to higher CL097-induced IFNα production by pDCs derived from females, indicating an extrinsic sex-specific effect of Type I IFNs on NK cell function. Interestingly, in addition to the extrinsic effect, we also observed NK cell-intrinsic sex differences, as female NK cells displayed higher activation levels after IFNα-stimulation and after co-culture with CL097-stimulated pDCs, suggesting higher activation of IFNα-signaling transduction in female NK cells. Taken together, the results from these studies identify both extrinsic and intrinsic sex-specific differences in Type I IFN-dependent NK cell functions, contributing to a better understanding of sex-specific differences in innate immunity.


Assuntos
Células Dendríticas , Interferon Tipo I , Masculino , Feminino , Humanos , Caracteres Sexuais , Células Matadoras Naturais , Interferon Tipo I/metabolismo , Imunidade Inata
9.
J Hepatol ; 77(6): 1532-1544, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35798133

RESUMO

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is a progressive cholangiopathy characterised by fibrotic stricturing and inflammation of bile ducts, which seems to be driven by a maladaptive immune response to bile duct injury. The histological finding of dendritic cell expansion in portal fields of patients with PSC prompted us to investigate the role of dendritic cells in orchestrating the immune response to bile duct injury. METHODS: Dendritic cell numbers and subtypes were determined in different mouse models of cholangitis by flow cytometry based on lineage-imprinted markers. Findings were confirmed by immunofluorescence microscopy of murine livers, and liver samples from patients with PSC were compared to control samples from bariatric surgery patients. Using genetic tools, selected dendritic cell subsets were depleted in murine cholangitis. The dendritic cell response to bile duct injury was determined by single-cell transcriptomics. RESULTS: Cholangitis mouse models were characterised by selective intrahepatic expansion of type 2 conventional dendritic cells, whereas plasmacytoid and type 1 conventional dendritic cells were not expanded. Expansion of type 2 conventional dendritic cells in human PSC lesions was confirmed by histology. Depletion studies revealed a proinflammatory role of type 2 conventional dendritic cells. Single-cell transcriptomics confirmed inflammatory maturation of the intrahepatic type 2 conventional dendritic cells and identified dendritic cell-derived inflammatory mediators. CONCLUSIONS: Cholangitis is characterised by intrahepatic expansion and inflammatory maturation of type 2 conventional dendritic cells in response to biliary injury. Therefore, type 2 conventional dendritic cells and their inflammatory mediators might be potential therapeutic targets for the treatment of PSC. LAY SUMMARY: Primary sclerosing cholangitis (PSC) is an inflammatory liver disease of the bile ducts for which there is no effective treatment. Herein, we show that the inflammatory immune response to bile duct injury is organised by a specific subtype of immune cell called conventional type 2 dendritic cells. Our findings suggest that this cell subtype and the inflammatory molecules it produces are potential therapeutic targets for PSC.


Assuntos
Sistema Biliar , Colangite Esclerosante , Colangite , Humanos , Camundongos , Animais , Colangite/metabolismo , Sistema Biliar/patologia , Modelos Animais de Doenças , Células Dendríticas/metabolismo , Mediadores da Inflamação/metabolismo
10.
EMBO Rep ; 23(8): e54133, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35758160

RESUMO

NK cells utilize a large array of receptors to screen their surroundings for aberrant or virus-infected cells. Given the vast diversity of receptors expressed on NK cells we seek to identify receptors involved in the recognition of HIV-1-infected cells. By combining an unbiased large-scale screening approach with a functional assay, we identify TRAIL to be associated with NK cell degranulation against HIV-1-infected target cells. Further investigating the underlying mechanisms, we demonstrate that TRAIL is able to elicit multiple effector functions in human NK cells independent of receptor-mediated induction of apoptosis. Direct engagement of TRAIL not only results in degranulation but also IFNγ production. Moreover, TRAIL-mediated NK cell activation is not limited to its cognate death receptors but also decoy receptor I, adding a new perspective to the perceived regulatory role of decoy receptors in TRAIL-mediated cytotoxicity. Based on these findings, we propose that TRAIL not only contributes to the anti-HIV-1 activity of NK cells but also possesses a multifunctional role beyond receptor-mediated induction of apoptosis, acting as a regulator for the induction of different effector functions.


Assuntos
Citotoxicidade Imunológica , HIV-1 , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais , Ativação Linfocitária
11.
Sci Immunol ; 6(63): eabe2942, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533978

RESUMO

Human adenoviruses (HAdVs) are a major cause for disease in children, in particular after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Currently, effective therapies for HAdV infections in immunocompromised hosts are lacking. To decipher immune recognition of HAdV infection and determine new targets for immune-mediated control, we used an HAdV infection 3D organoid system, based on primary human intestinal epithelial cells. HLA-F, the functional ligand for the activating NK cell receptor KIR3DS1, was strongly up-regulated and enabled enhanced killing of HAdV5-infected cells in organoids by KIR3DS1+ NK cells. In contrast, HLA-A and HLA-B were significantly down-regulated in HAdV5-infected organoids in response to adenoviral E3/glycoprotein19K, consistent with evasion from CD8+ T cells. Immunogenetic analyses in a pediatric allo-HSCT cohort showed a reduced risk to develop severe HAdV disease and faster clearance of HAdV viremia in children receiving KIR3DS1+/HLA-Bw4+ donor cells compared with children receiving non­KIR3DS1+/HLA-Bw4+ cells. These findings identify the KIR3DS1/HLA-F axis as a new target for immunotherapeutic strategies against severe HAdV disease.


Assuntos
Infecções por Adenovirus Humanos/imunologia , Células Matadoras Naturais/imunologia , Receptores KIR3DS1/imunologia , Células A549 , Adenovírus Humanos/imunologia , Células HEK293 , Humanos
12.
Clin Infect Dis ; 73(12): 2205-2216, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33606024

RESUMO

BACKGROUND: Mechanisms underlying an association between human immunodeficiency virus (HIV) or antiretroviral therapy (ART) during pregnancy with risk of preterm delivery (PTD) and small-for-gestational-age (SGA) remain unclear. We explored the association between cellular immune activation and PTD or SGA in women with HIV initiating ART during or before pregnancy. METHODS: Women with HIV enrolled at median 15 weeks' gestation, were analyzed for immune markers, and matched on ART initiation timing (15 women initiated pre- and 15 during pregnancy). There were 30 PTD (delivery <37 weeks), 30 SGA (weight for age ≤10th percentile) cases, and 30 controls (term, weight for gestational age >25th percentile) as outcomes. Lymphocytes, monocytes, and dendritic cell populations and their activation status or functionality were enumerated by flow cytometry. RESULTS: PTD cases initiating ART in pregnancy showed decreased CD8+ T cell, monocyte, and dendritic cell activation; increased classical (CD14+CD16-) and intermediate (CD14+CD16+) monocyte frequencies; and decreased inflammatory monocytes (CD14dimCD16+) compared with SGA cases and term controls (all P < .05). Allowing for baseline viral load, the immune markers remained significantly associated with PTD but only in women initiating ART in pregnancy. Lower monocyte activation was predictive of PTD. TLR ligand-induced interferon-α and macrophage inflammatory protein-1ß levels in monocytes were significantly lower in PTD women initiating ART in pregnancy. CONCLUSION: Low immune activation, skewing toward anti-inflammatory monocytes, and lower monocyte cytokine production in response to TLR ligand stimulation were associated with PTD but not SGA among women initiating ART in, but not before, pregnancy, suggesting immune anergy to microbial stimulation as a possible underlying mechanism for PTD in women initiating ART in pregnancy.


Assuntos
Infecções por HIV , Complicações Infecciosas na Gravidez , Nascimento Prematuro , Estudos de Casos e Controles , Feminino , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Mães , Gravidez , Complicações Infecciosas na Gravidez/tratamento farmacológico , África do Sul/epidemiologia
13.
Kidney Int ; 99(5): 1140-1148, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33359499

RESUMO

BK polyomavirus-associated nephropathy is a common complication after kidney transplantation leading to reduced graft function or loss. The molecular pathogenesis of BK polyomavirus-induced nephropathy is not well understood. A recent study had described a protective effect of the activating natural killer cell receptor KIR3DS1 in BK polyomavirus-associated nephropathy, suggesting a role of NK cells in modulating disease progression. Using an in vitro cell culture model of human BK polyomavirus infection and kidney biopsy samples from patients with BK polyomavirus-associated nephropathy, we observed significantly increased surface expression of the ligand for KIR3DS1, HLA-F, on BK polyomavirus-infected kidney tubular cells. Upregulation of HLA-F expression resulted in significantly increased binding of KIR3DS1 to BK polyomavirus-infected cells and activation of primary KIR3DS-positive natural killer cells. Thus, our data provide a mechanism by which KIR3DS-positive natural killer cells can control BK polyomavirus infection of the kidney, and rationale for exploring HLA-F/KIR3DS1 interactions for immunotherapeutic approaches in BK polyomavirus-associated nephropathy.


Assuntos
Vírus BK , Nefropatias , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Humanos , Células Matadoras Naturais/metabolismo , Receptores KIR3DS1/genética , Receptores KIR3DS1/metabolismo , Regulação para Cima
14.
Leukemia ; 35(4): 1073-1086, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32826957

RESUMO

We identified a subset of Chronic Lymphocytic Leukemia (CLL) patients with high Signaling Lymphocytic Activation Molecule Family (SLAMF) receptor-related signaling that showed an indolent clinical course. Since SLAMF receptors play a role in NK cell biology, we reasoned that these receptors may impact NK cell-mediated CLL immunity. Indeed, our experiments showed significantly decreased degranulation capacity of primary NK cells from CLL patients expressing low levels of SLAMF1 and SLAMF7. Since the SLAMFlow signature was strongly associated with an unmutated CLL immunoglobulin heavy chain (IGHV) status in large datasets, we investigated the impact of SLAMF1 and SLAMF7 on the B cell receptor (BCR) signaling axis. Overexpression of SLAMF1 or SLAMF7 in IGHV mutated CLL cell models resulted in reduced proliferation and impaired responses to BCR ligation, whereas the knockout of both receptors showed opposing effects and increased sensitivity toward inhibition of components of the BCR pathway. Detailed molecular analyzes showed that SLAMF1 and SLAMF7 receptors mediate their BCR pathway antagonistic effects via recruitment of prohibitin-2 (PHB2) thereby impairing its role in signal transduction downstream the IGHV-mutant IgM-BCR. Together, our data indicate that SLAMF receptors are important modulators of the BCR signaling axis and may improve immune control in CLL by interference with NK cells.


Assuntos
Linfócitos B/metabolismo , Linfócitos B/patologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Feminino , Regulação Leucêmica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/etiologia , Leucemia Linfocítica Crônica de Células B/mortalidade , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Proibitinas , RNA Interferente Pequeno/genética
15.
Front Immunol ; 11: 568927, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335526

RESUMO

NK cells are phenotypically and functionally diverse lymphocytes due to variegated expression of a large array of receptors. NK-cell activity is tightly regulated through integration of receptor-derived inhibitory and activating signals. Thus, the receptor profile of each NK cell ultimately determines its ability to sense aberrant cells and subsequently mediate anti-viral or anti-tumor responses. However, an in-depth understanding of how different receptor repertoires enable distinct immune functions of NK cells is lacking. Therefore, we investigated the phenotypic diversity of primary human NK cells by performing extensive phenotypic characterization of 338 surface molecules using flow cytometry (n = 18). Our results showed that NK cells express at least 146 receptors on their surface. Of those, 136 (>90%) exhibited considerable inter-donor variability. Moreover, comparative analysis of CD56bright and CD56dim NK cells identified 70 molecules with differential expression between the two major NK-cell subsets and allowed discrimination of these subsets via unsupervised hierarchical clustering. These receptors were associated with a broad range of NK-cell functions and multiple molecules were not previously associated with predominant expression on either subset (e.g. CD82 and CD147). Altogether, our study contributes to an improved understanding of the phenotypic diversity of NK cells and its potential functional implications on a cellular and population level. While the identified distinct signatures in the receptor repertoires provide a molecular basis for the differential immune functions exerted by CD56bright and CD56dim NK cells, the observed inter-individual differences in the receptor repertoire of NK cells may contribute to a diverging ability to control certain diseases.


Assuntos
Antígeno CD56/imunologia , Células Matadoras Naturais/imunologia , Humanos , Fenótipo
16.
Cell Rep ; 33(11): 108502, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326789

RESUMO

Changes in antibody glycosylation are linked to inflammation across several diseases. Alterations in bulk antibody galactosylation can predict rheumatic flares, act as a sensor for immune activation, predict gastric cancer relapse, track with biological age, shift with vaccination, change with HIV reservoir size on therapy, and decrease in HIV and HCV infections. However, whether changes in antibody Fc biology also track with reservoir rebound time remains unclear. The identification of a biomarker that could forecast viral rebound time could significantly accelerate the downselection and iterative improvement of promising HIV viral eradication strategies. Using a comprehensive antibody Fc-profiling approach, the level of HIV-specific antibody Fc N-galactosylation is significantly associated with time to rebound after treatment discontinuation across three independent cohorts. Thus virus-specific antibody glycosylation may represent a promising, simply measured marker to track reservoir reactivation.


Assuntos
Anticorpos Anti-HIV/metabolismo , Carga Viral/métodos , Glicosilação , Humanos
17.
Front Immunol ; 11: 559576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101277

RESUMO

Natural killer (NK) cells are an important component of the innate immune system for the control of intracellular pathogens and cancer cells. NK cells demonstrate heterogeneous expression of inhibitory surface receptors. Signaling through these various receptors during NK cell development promotes functionality, referred to as NK cell education. Here we investigated the impact of education on NK cell metabolism through functional assessment of critical metabolic pathways and calcium signaling. Educated NK cells had an increased uptake of the metabolic substrates 2-NBDG, a fluorescent glucose analog, and BODIPY FL C16, a fluorescent palmitate, compared to uneducated NK cells. Comparison of NK cells educated via KIRs or NKG2A showed that NKG2A-educated NK cells were the main contributor to these differences in uptake of metabolites, and that NKG2A-educated NK cells were functionally more resilient in response to metabolic blockade of oxidative phosphorylation. Furthermore, NKG2A-educated NK cells exhibited higher peak calcium concentration following stimulation, indicating stronger signaling events taking place in these educated NK cells. These results demonstrate that cellular metabolism plays an important role in the functional differences observed between educated and uneducated NK cells, and show that NKG2A-educated NK cells remain more functionally competent than KIR-educated NK cells when oxidative phosphorylation is restricted. Understanding metabolic programming during NK cell education may unveil future targets to manipulate NK cell function for use in clinical settings, such as cancer therapies.


Assuntos
Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores KIR/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , Sinalização do Cálcio , Diferenciação Celular , Estudos de Coortes , Desoxiglucose/análogos & derivados , Glicólise , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células K562 , Fosforilação Oxidativa
18.
Nat Commun ; 11(1): 3459, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651360

RESUMO

Hepatic amebiasis, predominantly occurring in men, is a focal destruction of the liver due to the invading protozoan Entamoeba histolytica. Classical monocytes as well as testosterone are identified to have important functions for the development of hepatic amebiasis in mice, but a link between testosterone and monocytes has not been identified. Here we show that testosterone treatment induces proinflammatory responses in human and mouse classical monocytes. When treated with 5α-dihydrotestosterone, a strong androgen receptor ligand, human classical monocytes increase CXCL1 production in the presence of Entamoeba histolytica antigens. Moreover, plasma testosterone levels of individuals undergoing transgender procedure correlate positively with the TNF and CXCL1 secretion from their cultured peripheral blood mononuclear cells following lipopolysaccharide stimulation. Finally, testosterone substitution of castrated male mice increases the frequency of TNF/CXCL1-producing classical monocytes during hepatic amebiasis, supporting the hypothesis that the effects of androgens may contribute to an increased risk of developing monocyte-mediated pathologies.


Assuntos
Androgênios/farmacologia , Quimiocina CXCL1/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Di-Hidrotestosterona/farmacologia , Entamoeba histolytica/química , Voluntários Saudáveis , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
J Reprod Immunol ; 141: 103151, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32531656

RESUMO

Pregnancy represents an immunological challenge for the maternal immune system. Pregnancy augments innate immune responses, and particularly monocytes contribute to maintaining the balance between pro- and anti-inflammatory immune responses required for the successful sequence of distinct immunological phases throughout pregnancy. Nonetheless, studies that focus on the heterogeneity of monocytes and analyze the alteration of monocyte subsets in a longitudinal approach throughout healthy pregnancies have remained scarce. In this study, we characterized the gradual phenotypic changes of monocyte subsets and the secretory potential of bulk monocytes in peripheral blood mononuclear cells of healthy pregnant women from a population-based prospective birth cohort study. Blood samples at predefined time points were analyzed using flow cytometry for in-depth characterization of monocyte subsets, which confirmed a shift from classical towards intermediate monocytes throughout pregnancy. Principal component analysis revealed characteristic phenotypic changes on monocyte subsets, especially on the intermediate monocyte subset, throughout pregnancy. Pregnancy-related hormones were measured in serum and ß-human chorionic gonadotropin levels were significantly associated with expression of CD11b, CD116 and CCR2 on monocyte subsets. TLR4 and TLR7/8 stimulation of monocytes furthermore showed reduced polycytokine production towards the end of pregnancy. These data provide a comprehensive overview of phenotypic changes and secretory potential of monocytes in healthy pregnant women and establish a selective contribution of different monocyte subsets to healthy pregnancy. The results from this study therefore build a basis for future comparisons and evaluation of women with adverse pregnancy outcomes.


Assuntos
Imunidade Inata , Monócitos/imunologia , Gravidez/sangue , Adulto , Antígeno CD11b/metabolismo , Gonadotropina Coriônica Humana Subunidade beta/sangue , Feminino , Humanos , Monócitos/metabolismo , Gravidez/imunologia , Trimestres da Gravidez/sangue , Trimestres da Gravidez/imunologia , Estudos Prospectivos , Receptores CCR2/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Adulto Jovem
20.
AIDS ; 34(12): 1713-1723, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32501836

RESUMO

OBJECTIVE: Viral infections influence intracellular peptide repertoires available for presentation by HLA-I. Alterations in HLA-I/peptide complexes can modulate binding of killer immunoglobuline-like receptors (KIRs) and thereby the function of natural killer (NK) cells. Although multiple studies have provided evidence that HLA-I/KIR interactions play a role in HIV-1 disease progression, the consequence of HIV-1 infection for HLA-I/KIR interactions remain largely unknown. DESIGN: We determined changes in HLA-I presented peptides resulting from HIV-1-infection of primary human CD4 T cells and assessed the impact of changes in peptide repertoires on HLA-I/KIR interactions. METHODS: Liquid chromatography-coupled tandem mass spectrometry to identify HLA-I presented peptides, cell-based in-vitro assays to evaluate functional consequences of alterations in immunopeptidome and atomistic molecular dynamics simulations to confirm experimental data. RESULTS: A total of 583 peptides exclusively presented on HIV-1-infected cells were identified, of which only 0.2% represented HIV-1 derived peptides. Focusing on HLA-C*03 : 04/KIR2DL3 interactions, we observed that HLA-C*03 : 04-presented peptides derived from noninfected CD4 T cells mediated stronger binding of inhibitory KIR2DL3 than peptides derived from HIV-1-infected cells. Furthermore, the most abundant peptide presented by HLA-C*03 : 04 on noninfected CD4 T cells (VIYPARISL) mediated the strongest KIR2DL3-binding, while the most abundant peptide presented on HIV-1-infected cells (YAIQATETL) did not mediate KIR2DL3-binding. Molecular dynamics simulations of HLA-C*03 : 04/KIR2DL3 interactions in the context of these two peptides revealed that VIYPARISL significantly enhanced the HLA-C*03 : 04/peptide contact area to KIR2DL3 compared with YAIQATETL. CONCLUSION: These data demonstrate that HIV-1 infection-induced changes in HLA-I-presented peptides can reduce engagement of inhibitory KIRs, providing a mechanism for enhanced activation of NK cells by virus-infected cells.


Assuntos
Infecções por HIV , HIV-1 , Antígenos HLA-C , Humanos , Peptídeos , Receptores KIR , Receptores de Células Matadoras Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA