Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nephrol Dial Transplant ; 39(3): 414-425, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37632201

RESUMO

BACKGROUND: Sodium-glucose co-transporter 2 inhibitors (SGLT2is) are part of the standard of care for patients with chronic kidney disease (CKD), both with and without type 2 diabetes. Endothelin A (ETA) receptor antagonists have also been shown to slow progression of CKD. Differing mechanisms of action of SGLT2 and ETA receptor antagonists may enhance efficacy. We outline a study to evaluate the effect of combination zibotentan/dapagliflozin versus dapagliflozin alone on albuminuria and estimated glomerular filtration rate (eGFR). METHODS: We are conducting a double-blind, active-controlled, Phase 2b study to evaluate the efficacy and safety of ETA receptor antagonist zibotentan and SGLT2i dapagliflozin in a planned 415 adults with CKD (Zibotentan and Dapagliflozin for the Treatment of CKD; ZENITH-CKD). Participants are being randomized (1:2:2) to zibotentan 0.25 mg/dapagliflozin 10 mg once daily (QD), zibotentan 1.5 mg/dapagliflozin 10 mg QD and dapagliflozin 10 mg QD alone, for 12 weeks followed by a 2-week off-treatment wash-out period. The primary endpoint is the change in log-transformed urinary albumin-to-creatinine ratio (UACR) from baseline to Week 12. Other outcomes include change in blood pressure from baseline to Week 12 and change in eGFR the study. The incidence of adverse events will be monitored. Study protocol-defined events of special interest include changes in fluid-related measures (weight gain or B-type natriuretic peptide). RESULTS: A total of 447 patients were randomized and received treatment in placebo/dapagliflozin (n = 177), zibotentan 0.25 mg/dapagliflozin (n = 91) and zibotentan 1.5 mg/dapagliflozin (n =  179). The mean age was 62.8 years, 30.9% were female and 68.2% were white. At baseline, the mean eGFR of the enrolled population was 46.7 mL/min/1.73 m2 and the geometric mean UACR was 538.3 mg/g. CONCLUSION: This study evaluates the UACR-lowering efficacy and safety of zibotentan with dapagliflozin as a potential new treatment for CKD. The study will provide information about an effective and safe zibotentan dose to be further investigated in a Phase 3 clinical outcome trial. CLINICAL TRIAL REGISTRATION NUMBER: NCT04724837.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Pirrolidinas , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/tratamento farmacológico , Método Duplo-Cego , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/induzido quimicamente , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos
2.
Lab Chip ; 23(14): 3226-3237, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37341452

RESUMO

Modelling proximal tubule physiology and pharmacology is essential to understand tubular biology and guide drug discovery. To date, multiple models have been developed; however, their relevance to human disease has yet to be evaluated. Here, we report a 3D vascularized proximal tubule-on-a-multiplexed chip (3DvasPT-MC) device composed of co-localized cylindrical conduits lined with confluent epithelium and endothelium, embedded within a permeable matrix, and independently addressed by a closed-loop perfusion system. Each multiplexed chip contains six 3DvasPT models. We performed RNA-seq and compared the transcriptomic profile of proximal tubule epithelial cells (PTECs) and human glomerular endothelial cells (HGECs) seeded in our 3D vasPT-MCs and on 2D transwell controls with and without a gelatin-fibrin coating. Our results reveal that the transcriptional profile of PTECs is highly dependent on both the matrix and flow, while HGECs exhibit greater phenotypic plasticity and are affected by the matrix, PTECs, and flow. PTECs grown on non-coated Transwells display an enrichment of inflammatory markers, including TNF-a, IL-6, and CXCL6, resembling damaged tubules. However, this inflammatory response is not observed for 3D proximal tubules, which exhibit expression of kidney signature genes, including drug and solute transporters, akin to native tubular tissue. Likewise, the transcriptome of HGEC vessels resembled that of sc-RNAseq from glomerular endothelium when seeded on this matrix and subjected to flow. Our 3D vascularized tubule on chip model has utility for both renal physiology and pharmacology.


Assuntos
Células Endoteliais , Túbulos Renais Proximais , Humanos , Túbulos Renais Proximais/metabolismo , Epitélio , Rim , Células Epiteliais/metabolismo , Fenótipo
3.
J Biol Chem ; 283(29): 20220-30, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18441008

RESUMO

Although structural studies on the ligand-binding domain (LBD) have established the general mode of nuclear receptor (NR)/coactivator interaction, determinants of binding specificity are only partially understood. The LBD of estrogen receptor-alpha (ERalpha), for example, interacts only with a region of peroxisome proliferator-activated receptor coactivator (PGC)-1alpha, which contains the canonical LXXLL motif (NR box2), whereas the LBD of estrogen-related receptor-alpha (ERRalpha) also binds efficiently an untypical, LXXYL-containing region (NR box3) of PGC-1alpha. Surprisingly, in a previous structural study, the ERalpha LBD has been observed to bind NR box3 of transcriptional intermediary factor (TIF)-2 untypically via LXXYL, whereas the ERRalpha LBD binds this region of TIF-2 only poorly. Here we present a new crystal structure of the ERRalpha LBD in complex with a PGC-1alpha box3 peptide. In this structure, residues N-terminal of the PGC-1alpha LXXYL motif formed contacts with helix 4, the loop connecting helices 8 and 9, and with the C terminus of the ERRalpha LBD. Interaction studies using wild-type and mutant PGC-1alpha and ERRalpha showed that these contacts are functionally relevant and are required for efficient ERRalpha/PGC-1alpha interaction. Furthermore, a structure comparison between ERRalpha and ERalpha and mutation analyses provided evidence that the helix 8-9 loop, which differs significantly in both nuclear receptors, is a major determinant of coactivator binding specificity. Finally, our results revealed that in ERRalpha the helix 8-9 loop allosterically links the LBD homodimer interface with the coactivator cleft, thus providing a plausible explanation for distinct PGC-1alpha binding to ERRalpha monomers and homodimers.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Proteínas de Choque Térmico/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Estrogênio/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Receptor ERRalfa Relacionado ao Estrogênio
4.
Biochim Biophys Acta ; 1659(1): 73-82, 2004 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-15511529

RESUMO

Proton-pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an alpha and a beta subunit of 54 and 49 kDa, respectively, and is made up of three domains. Domain I (dI) and III (dIII) are hydrophilic and contain the NAD(H)- and NADP(H)-binding sites, respectively, whereas the hydrophobic domain II (dII) contains 13 transmembrane alpha-helices and harbours the proton channel. Using a cysteine-free transhydrogenase, the organization of dII and helix-helix distances were investigated by the introduction of one or two cysteines in helix-helix loops on the periplasmic side. Mutants were subsequently cross-linked in the absence and presence of diamide and the bifunctional maleimide cross-linker o-PDM (6 A), and visualized by SDS-PAGE. In the alpha(2)beta(2) tetramer, alphabeta cross-links were obtained with the alphaG476C-betaS2C, alphaG476C-betaT54C and alphaG476C-betaS183C double mutants. Significant alphaalpha cross-links were obtained with the alphaG476C single mutant in the loop connecting helix 3 and 4, whereas betabeta cross-links were obtained with the betaS2C, betaT54C and betaS183C single mutants in the beginning of helix 6, the loop between helix 7 and 8 and the loop connecting helix 11 and 12, respectively. In a model based on 13 mutants, the interface between the alpha and beta subunits in the dimer is lined along an axis formed by helices 3 and 4 from the alpha subunit and helices 6, 7 and 8 from the beta subunit. In addition, helices 2 and 4 in the alpha subunit together with helices 6 and 12 in the beta subunit interact with their counterparts in the alpha(2)beta(2) tetramer. Each beta subunit in the alpha(2)beta(2) tetramer was concluded to contain a proton channel composed of the highly conserved helices 9, 10, 13 and 14.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/enzimologia , NADP Trans-Hidrogenases/química , NADP Trans-Hidrogenases/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Ativação Enzimática , Estabilidade Enzimática , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Peso Molecular , Mutagênese Sítio-Dirigida , NADP Trans-Hidrogenases/genética , Ligação Proteica , Estrutura Terciária de Proteína , Bombas de Próton , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
5.
Biochemistry ; 42(37): 10998-1003, 2003 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-12974635

RESUMO

Proton pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an alpha subunit with the NAD(H)-binding domain I and a beta subunit with the NADP(H)-binding domain III. The membrane domain (domain II) harbors the proton channel and is made up of the hydrophobic parts of the alpha and beta subunits. The interface in domain II between the alpha and the beta subunits has previously been investigated by cross-linking loops connecting the four transmembrane helices in the alpha subunit and loops connecting the nine transmembrane helices in the beta subunit. However, to investigate the organization of the nine transmembrane helices in the beta subunit, a split was introduced by creating a stop codon in the loop connecting transmembrane helices 9 and 10 by a single mutagenesis step, utilizing an existing downstream start codon. The resulting enzyme was composed of the wild-type alpha subunit and the two new peptides beta1 and beta2. As compared to other split membrane proteins, the new transhydrogenase was remarkably active and catalyzed activities for the reduction of 3-acetylpyridine-NAD(+) by NADPH, the cyclic reduction of 3-acetylpyridine-NAD(+) by NADH (mediated by bound NADP(H)), and proton pumping, amounting to about 50-107% of the corresponding wild-type activities. These high activities suggest that the alpha subunit was normally folded, followed by a concerted folding of beta1 + beta2. Cross-linking of a betaS105C-betaS237C double cysteine mutant in the functional split cysteine-free background, followed by SDS-PAGE analysis, showed that helices 9, 13, and 14 were in close proximity. This is the first time that cross-linking between helices in the same beta subunit has been demonstrated.


Assuntos
Escherichia coli/enzimologia , NADP Trans-Hidrogenases/química , Prótons , Catálise , Códon , Reagentes de Ligações Cruzadas/farmacologia , Cisteína/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Fator Xa/química , Cinética , Modelos Biológicos , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , NAD/química , NADP/química , Peptídeos/química , Plasmídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteolipídeos/química , Fatores de Tempo , Tripsina/farmacologia
6.
Biochemistry ; 42(21): 6575-81, 2003 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12767241

RESUMO

Proton-translocating nicotinamide nucleotide transhydrogenase is a membrane-bound protein composed of three domains: the hydrophilic NAD(H)-binding domain, the hydrophilic NADP(H)-binding domain, and the hydrophobic membrane domain. The latter harbors the proton channel. In Escherichia coli transhydrogenase, the membrane domain is composed of 13 transmembrane alpha helices, of which especially helices 13 and 14 contain conserved residues. To characterize the roles of the individual residues betaLeu240 to betaSer260 in helix 14, these were mutated as single mutants to cysteines in the cysteine-free background, and in the case of betaGly245, betaGly249, and betaGly252, also to leucines. In addition to the residues forming the helix, residues betaAsn238 and betaAsp239 were also mutated. Except for betaI242C, all mutants were normally expressed, purified, and characterized with respect to, e.g., catalytic activities and proton pumping. The results show that mutation of the conserved glycines betaGly245, betaGly249, and betaGly252, located on the same face of the helix, led to a general inhibition of all activities, especially in the case of betaGly252, suggesting a role of these glycines in helix-helix interactions. In contrast, mutation of the conserved serines betaSer250, betaSer251, and betaSer256 led to enhanced activities of all reactions, including the cyclic reaction which was mediated by bound NADP(H). Mutation of the remaining residues resulted in intermediate inhibitory effects. The results strongly support an important regulatory role of the membrane domain on the NADP(H)-binding site.


Assuntos
Escherichia coli/enzimologia , NADP Trans-Hidrogenases/química , Fosfatase Alcalina/metabolismo , Aminoácidos/química , Sítios de Ligação , Cisteína/química , Escherichia coli/metabolismo , Etilmaleimida/farmacologia , Glicina/química , Modelos Químicos , Mutagênese Sítio-Dirigida , Mutação , NAD/metabolismo , NADP/metabolismo , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Prótons , Serina/química
7.
Biochim Biophys Acta ; 1555(1-3): 122-7, 2002 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-12206903

RESUMO

Proton-translocating nicotinamide nucleotide transhydrogenase is a conformationally driven pump which catalyzes the reversibel reduction of NADP(+) by NADH. Transhydrogenases contain three domains, i.e., the hydrophilic NAD(H)-binding domain I and the NADP(H)-binding domain III, and the hydrophobic domain II containing the proton channel. Domains I and III have been separately expressed and characterized structurally by, e.g. X-ray crystallography and NMR. These domains catalyze transhydrogenation in the absence of domain II. However, due to the absence of the latter domain, the reactions catalyzed by domains I and III differ significantly from those catalyzed by the intact enzyme. Mutagenesis of residues in domain II markedly affects the activity of the intact enzyme. In order to resolve the structure-function relationships of the intact enzyme, and the molecular mechanism of proton translocation, it is therefore essential to establish the structure and function of domain II and its interactions with domains I and III. This review describes some relevant recent results in this field of research.


Assuntos
Membrana Celular/enzimologia , Escherichia coli/enzimologia , NADP Trans-Hidrogenases/química , ATPases Translocadoras de Prótons/química , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA