Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
ACS Omega ; 9(22): 23949-23962, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38854532

RESUMO

Arthrospira platensis has been the subject of plentiful studies due to its purported health advantages; nevertheless, additional investigation is required to determine whether several chronic diseases may be treated or avoided with its nanoform. Therefore, we set out to examine A. platensis nanoparticles (SNPs) to protect against kidney impairment caused by Streptozotocin (STZ) in diabetic rats, precisely focusing on its effect and the cellular intracellular pathways involved. Male Wistar rats were assigned into four groups: Group 1 was set as control, comprising the normal rats; group 2 was administered SNPs (0.5 mg/kg BW, once/day) orally for 84 consecutive days; group 3, STZ-diabetic rats were injected with STZ (65 mg/kg BW); and group 4, in which the diabetic rats were treated with SNPs. After inducing diabetes in rats for 84 days, the animals were euthanized. The results disclosed that SNP treatment substantially (P < 0.05) improved the glucose and glycated hemoglobin levels (HbA1c %), insulin, C-peptide, and cystatin C deterioration in diabetic rats. Furthermore, SNP administration significantly lowered (P < 0.05) nitric oxide (NO) and malondialdehyde (MDA) levels in renal tissue and enhanced kidney function metrics, as well as improved the antioxidant capacity of the renal tissue. In addition, oral SNPs overcame the diabetic complications concerning diabetic nephropathy, indicated by downregulation and upregulation of apoptotic and antiapoptotic genes, respectively, along with prominent modulation of the antiangiogenic marker countenance level, improving kidney function. SNP modulated the nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 (NRF2/HO-1) pathways and inhibited the nuclear factor-κB (NF-κB) expression, strengthening the SNP pathways in alleviating diabetic nephropathy. The histopathology results corroborated the obtained biochemical and molecular observations, suggesting the therapeutic potential of SNPs in diabetic nephropathy via mechanisms other than its significant antioxidant and hypoglycemic effects, including modulation of antiangiogenic and inflammatory mediators and the NRF2/HO-1 pathways.

2.
J Inorg Biochem ; 247: 112308, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37441923

RESUMO

Structural and biological studies were conducted on the novel complexes [Fe(U)2(H2O)2]Cl3 (FeU) and [Ru(U)2(H2O)2]Cl3 (RuU) (U = 5,6-Diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) to develop an anticancer drug candidate. The two complexes have been synthesized and characterized. Based on our findings, these complexes have octahedral geometry. The DNA-binding study proved that both complexes coordinated with CT-DNA. The docking study confirmed the potency of both complexes in downregulating the topoisomerase I protein through their high binding affinity. Biological studies have established that both complexes can act as potent anticancer agents against three cancer cell lines. RuU or FeU complexes induce apoptosis in breast cancer cells by increasing caspase9 protein and inhibiting proliferating cell nuclear antigen (PCNA) activity. In addition, both complexes down-regulate topoisomerase I expression in breast cancer cells. Therefore, the RuU and FeU complexes' anticancer activities were mediated via both apoptosis induction and topoisomerase I down-regulation. In conclusion, both complexes have dual anticancer activity pathways that may be responsible for the selective cytotoxicity of the complexes. This makes them more suitable for the development of novel cancer treatment strategies.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Rutênio , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Complexos de Coordenação/química , DNA/química , DNA Topoisomerases Tipo I/metabolismo , Ferro/química , Rutênio/química , Uracila
3.
Int J Biol Macromol ; 235: 123804, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36842736

RESUMO

The liver is the most important organ in the body. Hepatocyte oxidative damage occurs to excess ROS. Liver fibrosis is a mechanism that the immune system uses to treat extreme inflammation by repairing damaged tissue with the creation of a scar. The outcome of fibrosis may be reversed by consuming natural plant extracts with high ROS-scavenging ability. The date palm fruits contain caffeic acid, gallic acid, syringic acid, and ferulic acid, which have anti-inflammatory, antioxidant, and hepatoprotective properties. This study aimed to prepare a date fruit extract, load it onto chitosan nanoparticles, and compare its anti-fibrotic activity with the unloaded crude extract in the CCl4-mouse model. Our findings show that nanocomposite (Cs@FA/DEx) has anti-fibrotic properties and can improve liver function enzymes and endogenous antioxidant enzymes by inhibiting cell apoptosis caused by CCl4-induction in mice. Furthermore, significantly reduced CD95 and ICAM1 levels and down-regulation of TGFß-1 and collagen-α-1 expression demonstrated the anti-fibrotic effects of the Cs@FA/DEx. Therefore, the Cs@FA/DEx might be an innovative supplement for inhibiting liver fibrosis and hepatocyte inflammation induced by chemical toxins. Besides, this nano-supplement could be a promising anti-hepatocellular carcinoma agent as it has potent in vitro anticancer activity against the HePG2 cell line.


Assuntos
Quitosana , Hepatopatias , Nanopartículas , Phoeniceae , Camundongos , Animais , Phoeniceae/química , Quitosana/farmacologia , Quitosana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/química , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado , Antioxidantes/química , Hepatopatias/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Tetracloreto de Carbono/toxicidade
4.
Int J Biol Macromol ; 234: 123633, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791938

RESUMO

Lung cancer progresses without obvious symptoms and is detected in most patients at late stages, causing a high rate of mortality. Avocado peels (AVP) were thought to be biowaste, but they have antioxidant and anticancer properties in vitro. Chitosan nanoparticles (Cs-NPs) were loaded with various plant extracts, increasing their in vitro and in vivo anticancer activities. Our goal was to load AVP onto Cs-NPs and determine the role of AVP-extract or AVP-loaded Cs-NPs in controlling the progression of lung cancer caused by urethane toxicity. The AVP-loaded chitosan nano-combination (Cs@AVP NC) was synthesized and characterized. Our in vitro results show that Cs@AVP NC has higher anticancer activity than AVP against three human cancer cell lines. The in vivo study proved the activation of apoptosis in lung cancer cells with the Cs@AVP NC oral treatment more than the AVP treatment. Additionally, Cs@AVP NC-treated animals showed significantly higher p53 and Bax-expression levels and lower NF-κB p65 levels in their lung tissues than in positive control animals. In conclusion, our study demonstrated the superior anticancer potency of Cs@AVP NC over AVP extract and its ability to inhibit lung cancer proliferation. Therefore, oral consumption of Cs@AVP NC might be a promising treatment for lung cancer.


Assuntos
Quitosana , Neoplasias Pulmonares , Nanopartículas , Persea , Camundongos , Animais , Humanos , Uretana , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia
5.
PeerJ ; 10: e13990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213511

RESUMO

Background: Obesity and diabetes are becoming increasingly prevalent around the world. Inflammation, oxidative stress, insulin resistance, and glucose intolerance are linked to both obesity and type 2 diabetes, and these disorders are becoming major public health issues globally. Methods: This study evaluated the effects of obesity, diabetes, and hypoxia on the levels of pro- and anti-inflammatory cytokines in rats. We divided 120 Wistar rats in two groups, male and female, each including six subgroups: control (CTRL), obese (high-fat diet (HFD)), diabetic (streptozotocin (STZ)-treated), hypoxic (HYX), obese + diabetic (HFD/STZ), and obese + diabetic + hypoxic (HFD/STZ/HYX). We examined the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL10, and leptin in pancreatic tissues and serum. Results: No significant difference was observed in serum levels of cholesterol, triglycerides, and low-density lipoprotein (LDL) between HYX and CTRL in either sex. However, they were significantly increased, whereas high-density lipoprotein (HDL) was significantly decreased in HFD, STZ, HFD/STZ, and HFD/STZ/HPX compared with CTRL in both sexes. The expression of Tnf-α, Il6, and Lep was significantly upregulated in all subgroups compared with CTRL in both sexes. STZ and HYX showed no significant differences in the expression of these genes between sexes, whereas Tnf-α and Il6 were upregulated in male HFD, HFD/STZ, and HFD/STZ/HYX compared with females. Protein levels showed similar patterns. Combination subgroups, either in the absence or presence of hypoxia, frequently exhibited severe necrosis of endocrine components in pancreatic lobules. The combination of obesity, diabetes, and hypoxia was associated with inflammation, which was verified at the histopathological level.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Masculino , Feminino , Animais , Diabetes Mellitus Tipo 2/genética , Citocinas , Fator de Necrose Tumoral alfa/genética , Interleucina-6 , Ratos Wistar , Diabetes Mellitus Experimental/genética , Obesidade/genética , Inflamação/genética
6.
Front Nutr ; 9: 966557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204384

RESUMO

This project was designed to explore the xanthine oxidase (XO) inhibitory mechanism of eight structurally diverse phenolic compounds [quercetin: C1, quercetin-3-rhamnoside: C2, 4, 5-O-dicaffeoylquinic acid: C3, 3, 5-O-dicaffeoylquinic acid: C4, 3, 4-O-di-caffeoylquinic acid: C5, 4-O-caffeoylquinic acid (C6), 3-O-caffeoylquinic acid: C7, and caffeic acid: C8]. For this purpose, in-vitro and different computational methods were applied to determine the xanthine oxidase (XO) inhibitory potential of eight structurally diverse phenolic compounds. The results revealed that phenolic compounds (C1-C8) possess strong to weak XO inhibitory activity. These results were further confirmed by atomic force microscopy (AFM) and 1H NMR analysis. Furthermore, computational study results revealed that phenolic compounds (C1-C8) bind with the surrounding amino acids of XO at the molybdenum (MO) site. These in-vitro and in-silico results divulge that phenolic compounds have a strong potential to lower uric acid levels via interacting with the XO enzyme and can be used to combat hyperuricemia.

7.
Front Genet ; 13: 872845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051694

RESUMO

The NRAS gene is a well-known oncogene that acts as a major player in carcinogenesis. Mutations in the NRAS gene have been linked to multiple types of human tumors. Therefore, the identification of the most deleterious single nucleotide polymorphisms (SNPs) in the NRAS gene is necessary to understand the key factors of tumor pathogenesis and therapy. We aimed to retrieve NRAS missense SNPs and analyze them comprehensively using sequence and structure approaches to determine the most deleterious SNPs that could increase the risk of carcinogenesis. We also adopted structural biology methods and docking tools to investigate the behavior of the filtered SNPs. After retrieving missense SNPs and analyzing them using six in silico tools, 17 mutations were found to be the most deleterious mutations in NRAS. All SNPs except S145L were found to decrease NRAS stability, and all SNPs were found on highly conserved residues and important functional domains, except R164C. In addition, all mutations except G60E and S145L showed a higher binding affinity to GTP, implicating an increase in malignancy tendency. As a consequence, all other 14 mutations were expected to increase the risk of carcinogenesis, with 5 mutations (G13R, G13C, G13V, P34R, and V152F) expected to have the highest risk. Thermodynamic stability was ensured for these SNP models through molecular dynamics simulation based on trajectory analysis. Free binding affinity toward the natural substrate, GTP, was higher for these models as compared to the native NRAS protein. The Gly13 SNP proteins depict a differential conformational state that could favor nucleotide exchange and catalytic potentiality. A further application of experimental methods with all these 14 mutations could reveal new insights into the pathogenesis and management of different types of tumors.

8.
J Food Biochem ; 46(10): e14286, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35929489

RESUMO

Abnormal uric acid level result in the development of hyperuricemia and hallmark of various diseases, including renal injury, gout, cardiovascular disorders, and non-alcoholic fatty liver. This study was designed to explore the anti-inflammatory potential of stevia residue extract (STR) against hyperuricemia-associated renal injury in mice. The results revealed that STR at dosages of 150 and 300 mg/kg bw and allopurinol markedly modulated serum uric acid, blood urea nitrogen, and creatinine in hyperuricemic mice. Serum and renal cytokine levels (IL-18, IL-6, IL-1Β, and TNF-α) were also restored by STR treatments. Furthermore, mRNA and immunohistochemistry (IHC) analysis revealed that STR ameliorates UA (uric acid)-associated renal inflammation, fibrosis, and EMT (epithelial-mesenchymal transition) via MMPS (matrix metalloproteinases), inhibiting NF-κB/NLRP3 activation by the AMPK/SIRT1 pathway and modulating the JAK2-STAT3 and Nrf2 signaling pathways. In summary, the present study provided experimental evidence that STR is an ideal candidate for the treatment of hyperuricemia-mediated renal inflammation. PRACTICAL APPLICATIONS: The higher uric acid results in hyperuricemia and gout. The available options for the treatment of hyperuricemia and gout are the use of allopurinol, and colchicine drugs, etc. These drugs possess several undesirable side effect. The polyphenolic compounds are abundantly present in plants, for example, stevia residue extract (STR) exert a positive effect on human health. From this study results, we can recommend that polyphenolic compounds enrich STR could be applied to develop treatment options for the treatment of hyperuricemia and gout.


Assuntos
Medicamentos de Ervas Chinesas , Gota , Hiperuricemia , Stevia , Proteínas Quinases Ativadas por AMP/farmacologia , Alopurinol/metabolismo , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Colchicina/metabolismo , Colchicina/farmacologia , Colchicina/uso terapêutico , Creatinina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Gota/tratamento farmacológico , Gota/metabolismo , Humanos , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Interleucina-18/uso terapêutico , Interleucina-6/metabolismo , Rim , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Mensageiro/metabolismo , Sirtuína 1/metabolismo , Stevia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácido Úrico
9.
Molecules ; 27(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889493

RESUMO

A group of novel trimethoxyphenyl (TMP)-based analogues were synthesized by varying the azalactone ring of 2-(3,4-dimethoxyphenyl)-4-(3,4,5-trimethoxybenzylidene)oxazolone 1 and characterized using NMR spectral data as well as elemental microanalyses. All synthesized compounds were screened for their cytotoxic activity utilizing the hepatocellular carcinoma (HepG2) cell line. Compounds 9, 10 and 11 exhibited good cytotoxic potency with IC50 values ranging from 1.38 to 3.21 µM compared to podophyllotoxin (podo) as a reference compound. In addition, compounds 9, 10 and 11 exhibited potent inhibition of ß-tubulin polymerization. DNA flow cytometry analysis of compound 9 shows cell cycle disturbance at the G2/M phase and a significant increase in Annexin-V-positive cells compared with the untreated control. Compound 9 was further studied regarding its apoptotic potential in HepG2 cells; it decreased the level of MMP and Bcl-2 as well as boosted the level of p53 and Bax compared with the control HepG2 cells.


Assuntos
Antineoplásicos , Apoptose , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
10.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745081

RESUMO

A novel series of amides based TMP moiety was designed, synthesized and evaluated for their antiproliferative as well as enzyme inhibition activity. Compounds 6a and 6b showed remarkable cytotoxic activity against HepG2 cells with IC50 values 0.65 and 0.92 µM, respectively compared with SAHA and CA-4 as reference compounds. In addition, compound 6a demonstrated good HDAC-tubulin dual inhibition activity as it showed better HDAC activity as well as anti-tubulin activity. Moreover, compound 6a exhibited G2/M phase arrest and pre-G1 apoptosis as demonstrated by cell cycle analysis and Annexin V assays. Further apoptosis studies demonstrated that compound 6a boosted the level of caspase 3/7. Caspase 3/7 activation and apoptosis induction were evidenced by decrease in mitochondrial permeability suggesting that activation of caspase 3/7 may occur via mitochondrial apoptotic pathway.


Assuntos
Amidas , Antineoplásicos , Amidas/farmacologia , Antineoplásicos/farmacologia , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Relação Estrutura-Atividade
11.
Front Chem ; 10: 890675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518717

RESUMO

Cyclophosphamide (CP) is a mutagen that is used in cancer chemotherapy, due to its genotoxicity and as an immunosuppressive agent. Thalidomide (TH) is another cancer chemotherapeutic drug. In this study, the cytogenotoxicity and hypoxia modulatory activities of two phthalimide analogs of TH have been evaluated with/without CP. Both analogs have increased CP-stimulated chromosomal aberrations than those induced by TH, including gaps, breaks/fragments, deletions, multiple aberrations, and tetraploidy. The analogs have elevated the cytotoxic effect of CP by inhibiting the mitotic activity, in which analog 2 showed higher mitosis inhibition. CP has induced binucleated and polynucleated bone marrow cells (BMCs), while micronuclei (MN) are absent. TH and analogs have elevated the CP-stimulated binucleated BMCs, while only analogs have increased the CP-induced polynucleated BMCs and inhibited the mononucleated BMCs. MN-BMCs were shown together with mononucleated, binucleated, and polynucleated cells in the CP group. Both analogs have elevated mononucleated and polynucleated MN-BMCs, whereas in presence of CP, TH and analogs have enhanced mononucleated and binucleated MN-BMCs. The analogs significantly induce DNA fragmentation in a comet assay, where analog 1 is the strongest inducer. The treatment of mice with CP has resulted in a high hypoxia status as indicated by high pimonidazole adducts and high HIF-1α and HIF-2α concentrations in lymphocytes. Analogs/CP-treated mice showed low pimonidazole adducts. Both analogs have inhibited HIF-1α concentration but not HIF-2α. Taken together, the study findings suggest that both analogs have a higher potential to induce CP-genotoxicity than TH and that both analogs inhibit CP-hypoxia via the HIF-1α-dependent mechanism, in which analog 1 is a more potent anti-hypoxic agent than analog 2. Analog 1 is suggested as an adjacent CP-complementary agent to induce CP-genotoxicity and to inhibit CP-associated hypoxia.

12.
Diagnostics (Basel) ; 12(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453838

RESUMO

Background: Early detection and screening of breast cancer (BC) might help improve the prognosis of BC patients. This study evaluated the use of serum microRNAs (miRs) as non-invasive biomarkers in BC patients. Methods: Using quantitative real-time polymerase chain reaction, we evaluated the serum expression of four candidate miRs (miR-155, miR-373, miR-10b, and miR-34a) in 99 Egyptian BC patients and 40 healthy subjects (as a control). The miRs expression was correlated with clinicopathological data. In addition, the sensitivity and specificity of the miRs were determined using receiver operating characteristic (ROC) curve analysis. Results: Serum miR-155, miR-373, and miR-10b expression were significantly upregulated (p < 0.001), while serum miR-34a was downregulated (p < 0.00) in nonmetastatic (M0) BC patients compared to the control group. In addition, serum miR-155 and miR-10b were upregulated in BC patients with large tumor sizes and extensive nodal involvement (p < 0.001). ROC curve analysis showed high diagnostic accuracy (area under the curve = 1.0) when the four miRs were combined. Serum miR-373 was significantly upregulated in the human epidermal growth factor 2−negative (p < 0.001), estrogen receptor−positive (p < 0.005), and progesterone receptor (PR)-positive (p < 0.024) in BC patients, and serum miR-155 was significantly upregulated in PR-negative (p < 0.001) BC patients while both serum miR-155 and miR-373 were positively correlated with the tumor grade. Conclusions: Circulating serum miR-155, miR-373, miR-10b, and miR-34a are potential biomarkers for early BC detection in Egyptian patients and their combination shows high sensitivity and specificity.

13.
Saudi J Biol Sci ; 29(3): 1428-1433, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280591

RESUMO

Diabetes is a worldwide public health disease. Currently, the most effective way to treat diabetes is to mitigate postprandial hyperglycemia by inhibiting carbohydrate hydrolysis enzymes in the digestive system. Plant extracts are rich in bioactive compounds, which can be used in diabetes treatment. This study aims to evaluate the polyphenols content in ethanolic extracts of avocado fruit and leaves (Persea americana Mill.). Additionally, their antioxidant activity using DPPH, while the inhibition ability of α-amylase was examined by reacting different amounts of the extracts with α-amylase compared to acarbose as standard inhibitor. The active compounds were detected in the extracts by LC/MS. The obtained results showed that the leaf extract recorded a significant content of total phenolic compounds compared to the fruit extract (178.95 and 145.7 mg GAE /g dry weight, respectively). The total flavonoid values ​​ranged from 32.5 to 70.08 mg QE/g dry weight of fruit and leaves extracts, respectively. Twenty-six phytogenic compounds were detected in leaf and fruit extract by LC/MS. These compounds belong to fatty acids, sterols, triterpenes, phenolic acids, and flavonoids. The antioxidant activity of the extracts is due to the exist of phytogenic compounds, i.e., polyphenols and flavonoids. The antioxidant activity increased in a concentration dependant manner. Avocado fruit extract (1000 µg/mL) scavenged 95% of DPPH while leaf extract rummaged 91.03% of free radicals compared with Vit C and BHT. Additionally, higher α-amylase inhibitory activity was observed in fruit extract than the leaf extract, where the fruit and leaf extract (1000 µg/ml) inhibited the enzyme by 92.13% and 88.95%, respectively. The obtained results showed that the ethanolic extracts of avocado could have a significant impact on human health due to their high content of polyphenols.

14.
Toxicol Res (Camb) ; 11(1): 22-31, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35237408

RESUMO

Natural antioxidant products play a vital role in the treatment and prevention of cancer disease because they have no side effects. This study aimed to compare the chemoprotective effect of Spirulina platensis (SP) and garlic against hepatocellular carcinoma (HCC) in rats. This study was being done by using 60 male Wistar rats and divided into four groups. Group (I): normal group. Group (II): HCC group induced by injection of a single dose of DEN (200 mg/kg/I.P) and after 14 days injected CCl4 (1 mg/kg/I.P) 3 times/week/six weeks. Group (III): HCC group received SP orally at a dose (500 mg/kg). Group (IV): HCC group received garlic (250 mg/kg) orally. The results revealed that the Spirulina and garlic treatment have a significant decrease in Glutamate pyruvate transaminase, Glutamate oxaloacetate transaminase, GGT, LDH, and the Malondialdehyde (MDA) activity, and furthermore, a significant increase in the total protein level, the superoxide dismutase (SOD), and Catalase (CAT) activity nearly to normal activity. Furthermore, the hepatic expression of tumor necrosis factor (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase, transforming growth factor-beta (TGF-ß1), Heat Shock Protein glycoprotein 96 (HSPgp96), and Glypican 3 (GP3) were down regulated by the Spirulina and garlic treatment in comparison with those in HCC group. All findings reported that the chemoprotective of both Spirulina and garlic that have nearly the same effect may be due to antioxidant activity and inhibition of lipid peroxidation, amelioration of pro-inflammatory cytokine, HSPgp96, and GP3.

15.
Naunyn Schmiedebergs Arch Pharmacol ; 395(2): 227-246, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34994822

RESUMO

Combination therapy comprising natural polyphenols and anticancer drugs has been used to decrease the adverse effects and increase the effectiveness and antioxidant activities of the drugs. The antioxidant and anticancer effects of quercetin (Q), a nutritive polyphenol, have been observed both in vitro and in vivo. Likewise, the anticancer activity of sulfamethoxazole (S) has been demonstrated in vitro and in vivo. This study aimed to investigate the in vitro and in vivo anticancer effects of Q alone and in combination with S. The in vitro effects of S, Q, and S + Q on HCT-116, HepG2, MCF-7, and PC3 cell lines were examined. Additionally, the in vivo effects of these drugs were evaluated using Ehrlich ascites carcinoma (EAC) tumor-bearing mice. The in vitro data revealed the potent anticancer activity of S + Q through the induction of apoptosis and cell cycle arrest. The EAC-inoculated mice treated with S + Q presented with elevated SOD, GSH, CAT, and TAC levels and decreased malondialdehyde levels compared with the untreated EAC group, thus revealing the antioxidant and protective actions of S + Q against EAC cell invasion. Furthermore, the downregulation of NFkB and upregulation of the caspase3 gene in the EAC-inoculated mice treated with the S + Q indicated the induction of the apoptotic pathway and decrease in both cell proliferation and metastasis. In conclusion, the combination of S and Q might exert anticancer effects by inducing apoptosis and exhibiting selective toxicity against the cancer cells and thereby protecting the vital organs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , NF-kappa B/metabolismo , Células PC-3 , Quercetina/administração & dosagem , Sulfametoxazol/administração & dosagem
16.
PLoS One ; 16(10): e0255502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714855

RESUMO

We evaluated phytochemical composition, antibacterial, antifungal, anti-oxidant and cytotoxic properties of aqueous (water) and organic extracts (methanol, ethyl acetate and n-hexane) of Chenopodium glaucum. Highest phenolic content 45 mg gallic acid equivalents (GAE)/g d.w was found in aqueous extract followed by ethyl acetate (41mg GAE/g d.w) and methanol extract (34.46 mg GAE/g d.w). Antibacterial potential of aqueous and organic extracts of C. glaucum was examined against Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli and Staphylococcus epidermidis. The aqueous, methanolic, ethyl acetate, and n-hexane extract showed antibacterial activity against A. baumannii, K. pneumoniae, E. coli and S. epidermidis. However, against A. baumannii significantly higher inhibition zone (19 mm and 18.96 mm respectively) was shown by ethyl acetate and methanol extracts. Aqueous extract possessed highest growth inhibition (11 mm) against E. coli. Aqueous, ethyl acetate and methanol extracts showed 9 mm, 10 mm, and 10.33 mm zone of inhibition against the K. pneumoniae. For antifungal activity, the extracts were less effective against Aspergillus niger but showed strong antifungal activity against Aspergillus flavus (A. flavus). The antioxidant activity was measured as DPPH (2, 2-diphenyl-1-picrylhydrazyl), H2O2 and ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity of free radicals. All the organic extracts of C. glaucum possessed ABTS, DPPH and H2O2 scavenging properties. The highest cytotoxic activity measured as half maximal inhibitory concentration (IC50) against human lungs carcinoma cells was recorded for methanolic (IC50 = 16 µg/mL) and n-hexane (IC50 = 25 µg/mL) extracts, respectively. The Gas chromatography-mass spectrometry (GC-MS) analysis showed 4 major and 26 minor compounds in n-hexane extract and 4 major and 7 minor compounds in methanol extract of the C. glaucum. It is concluded that aqueous and organic extracts of C. glaucum would be potential therapeutic agents and could be exploited on a pilot scale to treat human pathogenic diseases.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Chenopodium/química , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Antioxidantes/farmacologia , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento
17.
Saudi J Biol Sci ; 28(10): 5500-5517, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34588860

RESUMO

The current study aims to investigate the anticancer potential of Periploca hydaspidis extracts against HCCLM3 and MDA-MB 231 cell lines with invasive properties and to identify molecular targets underlying its action mechanism. Cytotoxic screening of plant extracts was done via MTT assay against liver and breast cancer cell lines and GC/MS of the best cytotoxic fraction was performed to identify its chemical composition. Flow cytometry detected apoptosis and cell-cycle changes after drug treatment. The specified cells were studied for migration and invasion potential along with performing western blot analysis of proteins involved in apoptosis, cell-cycle, metastasis, and MAPK (Mitogen-activated protein kinase) cell-signaling pathway. The results revealed the crude methanol (PHM) fraction of P. hydaspidis shown dose and time dependent cell-proliferative inhibition response. GC/MS analysis detected 54 compounds of which fatty acids (29.8%), benzenoids (15.7%), and esters (14.3%) constituted the bulk. The inhibitory effect against cancer cells was linked with cell-cycle arrest at G0/G1 phase, induction of apoptosis, reduced migration and invasion capabilities post treatment. PHM induced apoptosis via downregulation of anti-apoptotic (survivin, B-cell lymphoma Extra-large; BCL-XL, X-linked inhibitor of apoptosis protein; XIAP, Myelocytomatosis; C-myc), metastatic (Matrix metallopeptidases 9/2; MMP9/2), and cell-cycle regulatory (cyclin D1 and E) proteins, whereas upregulation of pro-apoptotic proteins (Bcl-2 homologous antagonist/killer; BAK, Bcl-2-Associate X protein; BAX, cleaved caspases; 3,7,8,9, and PARP) and activation of MAPK (Jun amino-terminal kinase; JNK and P38) pathway. P38 was needed for PHM-induced apoptosis, where the inhibition of P38 by pharmacological inhibitor (SB239063) diminished the apoptotic effects. Overall, our results conclude that PHM can inhibit cell-proliferation and induce apoptotic effects by activation of P38 MAPK cell-signaling pathway. This suggests the methanol fraction of P. hydaspidis (PHM) to have anticancer compounds, potentially useful for treating liver and breast cancer. In future, one-step advance studies of PHM regarding its role in metastatic inhibition, immune response modulation for reducing tumor, and inducing apoptosis in suitable animal models would be an interesting and promising research area.

18.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500621

RESUMO

Jellyfish venom is a rich source of bioactive proteins and peptides with various biological activities including antioxidant, antimicrobial and antitumor effects. However, the anti-proliferative activity of the crude extract of Rhopilema nomadica jellyfish venom has not been examined yet. The present study aimed at the investigation of the in vitro effect of R. nomadica venom on liver cancer cells (HepG2), breast cancer cells (MDA-MB231), human normal fibroblast (HFB4), and human normal lung cells (WI-38) proliferation by using MTT assay. The apoptotic cell death in HepG2 cells was investigated using Annexin V-FITC/PI double staining-based flow cytometry analysis, western blot analysis, and DNA fragmentation assays. R. nomadica venom displayed significant dose-dependent cytotoxicity on HepG2 cells after 48 h of treatment with IC50 value of 50 µg/mL and higher toxicity (3:5-fold change) against MDA-MB231, HFB4, and WI-38 cells. R. nomadica venom showed a prominent increase of apoptosis as revealed by cell cycle arrest at G2/M phase, upregulation of p53, BAX, and caspase-3 proteins, and the down-regulation of anti-apoptotic Bcl-2 protein and DNA fragmentation. These findings suggest that R. nomadica venom induces apoptosis in hepatocellular carcinoma cells. To the best of the authors' knowledge, this is the first scientific evidence demonstrating the induction of apoptosis and cell cycle arrest of R. nomadica jellyfish venom.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Venenos de Cnidários/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Cifozoários/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-34574650

RESUMO

Liver disease, especially liver cancer, has become a threat facing the world. Now, antioxidant products are garnering great attention for the treatment and prevention of many diseases. S-Methyl methionine sulfonium chloride (MMSC) is a methionine derivative and is present in many vegetables and has anti-inflammatory effects and antioxidants. This is the first study aiming to investigate the antitumor activity of the MMSC. This study was carried out on 60 male Wistar albino rats (4-6 weeks old age) and divided into four groups, with the first group as normal control, second group as hepatocarcinoma induced by diethyl nitrosamine and carbon tetrachloride (DEN/CCL4) group, third group as normal rats treated with MMSC, and fourth group as hepatocellular carcinoma (HCC) induced rats treated with MMSC. Our findings revealed that MMSC administration after HCC induction significantly improved (p < 0.05) the liver function biomarkers, including AST, GGT, albumin, globulin, and albumin/globulin ratio (A/G), in comparison with those in the HCC group. Moreover, the histopathological changes of the liver tissue in the HCC group were improved by MMSC treatment. Likewise, the expression levels of tumor necrosis factor-alpha (TNF-α), induced nitric oxide synthase (iNOS), transforming growth factor (TGF-1ß), and glypican 3 (GP3) were downregulated by MMSC treatment after HCC induction in comparison with those in the HCC-induced group. In conclusion, MMSC showed antitumor activity against HCC induction by DEN/CCl4 through decreasing lipid peroxide formation, the expression level of an inflammatory cytokines such as (TNF-α), immunoregulatory cytokines such as (TGF-1ß), induced nitric oxide synthase, and glypican 3.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Vitamina U , Animais , Antioxidantes , Carbono , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Cloretos , Dietilnitrosamina/toxicidade , Fígado , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Metionina/análogos & derivados , Ratos , Ratos Wistar
20.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361695

RESUMO

The active ingredients allicin and curcumin have a wide range of actions against fungi, bacteria, and helminths. Therefore, the study was aimed to evaluate the efficacy of allicin (AL) and curcumin (CU) as antischistosomal drugs and their biochemical effects in normal and Schistosoma mansoni-infected mice. Praziquantel (PZQ) was administrated for two successive days while AL or CU was given for two weeks from the week 7th postinfection (PI). The possible effect of different regimens on Schistosoma worms was evaluated by measuring the percentage of the recovered worms, tissue egg load, and oogram pattern. Serum alanine transaminase activity and levels of triglycerides, cholesterol, and uric acid were measured. Liver tissue malondialdehyde and reduced glutathione levels besides, the activities of glutathione-S-transferase, superoxide dismutase and catalase were assessed for the oxidative/antioxidant condition. DNA electrophoresis of liver tissue was used to indicate the degree of fragmentation. There was a significant reduction in the recovered worms and egg load, with a marked change of oogram pattern in all treated groups with PZQ, AL, and CU in comparison with infected-untreated mice. PZQ, AL, and CU prevented most of the hematological and biochemical disorders, as well as significantly improved the antioxidant capacity and enhanced DNA fragmentation in the liver tissue of schistosomiasis mice compared to the infected-untreated group. These promising results suggest that AL and CU are efficient as antischistosomal drugs, and it would be beneficial to test their combination to understand the mechanism of action and the proper period of treatment leading to the best result.


Assuntos
Antioxidantes/uso terapêutico , Curcuma/química , Curcumina/uso terapêutico , Dissulfetos/uso terapêutico , Alho/química , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Esquistossomicidas/uso terapêutico , Ácidos Sulfínicos/uso terapêutico , Animais , Fragmentação do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Contagem de Ovos de Parasitas , Praziquantel/uso terapêutico , Esquistossomose mansoni/parasitologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA