Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260389

RESUMO

The contribution of NETs (neutrophil extracellular traps) to thrombus formation has been intensively documented in both arterial and venous thrombosis in mice. We previously demonstrated that adenosine triphosphate (ATP)-activated neutrophils play a key role in initiating the tissue factor-dependent activation of the coagulation cascade, leading to thrombus formation following laser-induced injury. Here, we investigated the contribution of NETs to thrombus formation in a laser-induced injury model. In vivo, treatment of mice with DNase-I significantly inhibited the accumulation of polymorphonuclear neutrophils at the site of injury, neutrophil elastase secretion, and platelet thrombus formation within seconds following injury. Surprisingly, electron microscopy of the thrombus revealed that neutrophils present at the site of laser-induced injury did not form NETs. In vitro, ATP, the main neutrophil agonist present at the site of laser-induced injury, induced the overexpression of PAD4 and CitH3 but not NETosis. However, compared to no treatment, the addition of DNase-I was sufficient to cleave ATP and adenosine diphosphate (ADP) in adenosine. Human and mouse platelet aggregation by ADP and neutrophil activation by ATP were also significantly reduced in the presence of DNase-I. We conclude that following laser-induced injury, neutrophils but not NETs are involved in thrombus formation. Treatment with DNase-I induces the hydrolysis of ATP and ADP, leading to the generation of adenosine and the inhibition of thrombus formation in vivo.


Assuntos
Desoxirribonuclease I/metabolismo , Armadilhas Extracelulares/metabolismo , Trombose/metabolismo , Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Fibrina/metabolismo , Humanos , Hidrólise , Lasers , Elastase de Leucócito/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ativação de Neutrófilo , Neutrófilos/metabolismo , Ativação Plaquetária , Proteína-Arginina Desiminase do Tipo 4/metabolismo
2.
J Biol Chem ; 297(1): 100818, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029592

RESUMO

The cleavage of the insulin receptor by ß-secretase 1 (BACE1) in the liver increases during diabetes, which contributes to reduce insulin receptor levels and impair insulin signaling. However, the precise signaling events that lead to this increased cleavage are unclear. We showed that BACE1 cleaves the insulin receptor in the early secretory pathway. Indeed, coimmunoprecipitation experiments reveal the interaction of the proforms of the two proteins. Moreover, fragments of insulin receptor are detected in the early secretory pathway and a mutated form of BACE1 that retains its prodomain cleaves an early secretory pathway-resident form of the insulin receptor. We showed that BACE1 proform levels are regulated by proteasome and/or lysosome-dependent degradation systems whose efficiencies are dependent on the O-GlcNacylation process. Our results showed that enhanced O-GlcNacylation reduces the efficiency of intracellular protein degradation systems, leading to the accumulation of the proform of BACE1 in the early secretory pathway where it cleaves the precursor of the insulin receptor. All these dysregulations are found in the livers of diabetic mice. In addition, we performed a screen of molecules according to their ability to increase levels of the insulin receptor at the surface of BACE1-overexpressing cells. This approach identified the aminosterol Claramine, which accelerated intracellular trafficking of the proform of BACE1 and increased autophagy. Both of these effects likely contribute to the reduced amount of the proform of BACE1 in the early secretory pathway, thereby reducing insulin receptor cleavage. These newly described properties of Claramine are consistent with its insulin sensitizing effect.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Colestanos/farmacologia , Receptor de Insulina/metabolismo , Espermina/análogos & derivados , Animais , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Fígado/patologia , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Via Secretória/efeitos dos fármacos , Espermina/farmacologia , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
3.
Biomedicines ; 9(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668375

RESUMO

Venous thrombo-embolism (VTE) disease is the second most common cause of mortality in cancer patients, and evaluation and prevention of thrombosis risk is essential. VTE-associated risk varies according to the type of tumor disease. Oral cancer is the most frequent type of head and neck cancer, and it represents approximately 2.1% of all cancers worldwide. Most tumors are squamous cell carcinomas and are mainly due to tobacco and alcohol abuse. VTE risk associated with oral squamous cell carcinoma (OSCC) is low. However, many studies have shown that OSCC has the following biological features of cancers associated with a high thrombosis risk: modified thrombosis and fibrinolysis mechanisms; strong expression of procoagulant proteins; secretion of procoagulant microparticles; and production of procoagulant cytokines. Using an original mouse model of tongue squamous cell carcinoma, our study aimed to clarify this paradoxical situation. First, we showed that OSCC tumors have a pro-aggregatory phenotype and a high local thrombosis risk. Second, we found that tongue tumor mice do not have an elevated systemic thrombosis risk (the risk of an "at distance" thrombosis event such as lower extremity deep venous thrombosis or pulmonary embolism) and even show a reduction in risk. Third, we demonstrated that tongue tumor mice show a reduction in platelet reactivity, which explains the low systemic thrombosis risk. Finally, we found that tongue tumor mice present granule pool deficiency, thereby explaining the reduction in platelet reactivity and systemic thrombosis risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA