Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 433(17): 166957, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33771569

RESUMO

Many venomous organisms carry in their arsenal short polypeptides that block K+ channels in a highly selective manner. These toxins may compete with the permeating ions directly via a "plug" mechanism or indirectly via a "pore-collapse" mechanism. An alternative "lid" mechanism was proposed but remained poorly defined. Here we study the Drosophila Shaker channel block by Conkunitzin-S1 and Conkunitzin-C3, two highly similar toxins derived from cone venom. Despite their similarity, the two peptides exhibited differences in their binding poses and biophysical assays, implying discrete action modes. We show that while Conkunitzin-S1 binds tightly to the channel turret and acts via a "pore-collapse" mechanism, Conkunitzin-C3 does not contact this region. Instead, Conk-C3 uses a non-conserved Arg to divert the permeant ions and trap them in off-axis cryptic sites above the SF, a mechanism we term a "molecular-lid". Our study provides an atomic description of the "lid" K+ blocking mode and offers valuable insights for the design of therapeutics based on venom peptides.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Peptídeos/farmacologia , Canais de Potássio/metabolismo , Potássio/metabolismo , Venenos de Escorpião/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/efeitos dos fármacos , Biofísica/métodos , Xenopus laevis/metabolismo
2.
J Bacteriol ; 185(5): 1509-17, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12591867

RESUMO

Alkylation and oxidation of cysteine residues significantly decrease the catalytic activity and stimulate the degradation of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO). We analyzed the role of vicinal cysteine residues in redox regulation of RuBisCO from Synechocystis sp. strain PCC 6803. Cys172 and Cys192, which are adjacent to the catalytic site, and Cys247, which cross-links two large subunits, were replaced by alanine. Whereas all mutant cells (C172A, C192A, C172A-C192A, and C247A) and the wild type grew photoautotrophically at similar rates, the maximal photosynthesis rates of C172A mutants decreased 10 to 20% as a result of 40 to 60% declines in RuBisCO turnover number. Replacement of Cys172, but not replacement of Cys192, prominently decreased the effect of cysteine alkylation or oxidation on RuBisCO. Oxidants that react with vicinal thiols had a less inhibitory effect on the activity of either the C172A or C192A enzyme variants, suggesting that a disulfide bond was formed upon oxidation. Thiol oxidation induced RuBisCO dissociation into subunits. This effect was either reduced in the C172A and C192A mutant enzymes or eliminated by carboxypentitol bisphosphate (CPBP) binding to the activated enzyme form. The CPBP effect presumably resulted from a conformational change in the carbamylated CPBP-bound enzyme, as implied from an alteration in the electrophoretic mobility. Stress conditions, provoked by nitrate deprivation, decreased the RuBisCO contents and activities in the wild type and in the C192A and C247A mutants but not in the C172A and C172A-C192A mutants. These results suggest that although Cys172 does not participate in catalysis, it plays a role in redox regulation of RuBisCO activity and degradation.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Cisteína/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Alquilantes/química , Proteínas de Bactérias/genética , Cianobactérias/genética , Cisteína/genética , Estabilidade Enzimática , Iodoacetatos/química , Cinética , Nitrogênio/metabolismo , Oxirredução , Pentosefosfatos/metabolismo , Mutação Puntual , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA