Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
2.
Front Plant Sci ; 12: 747500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646292

RESUMO

The receptor binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in the virus-host cell interaction, and viral infection. The RBD is a major target for neutralizing antibodies, whilst recombinant RBD is commonly used as an antigen in serological assays. Such assays are essential tools to gain control over the pandemic and detect the extent and durability of an immune response in infected or vaccinated populations. Transient expression in plants can contribute to the fast production of viral antigens, which are required by industry in high amounts. Whilst plant-produced RBDs are glycosylated, N-glycan modifications in plants differ from humans. This can give rise to the formation of carbohydrate epitopes that can be recognized by anti-carbohydrate antibodies present in human sera. For the performance of serological tests using plant-produced recombinant viral antigens, such cross-reactive carbohydrate determinants (CCDs) could result in false positives. Here, we transiently expressed an RBD variant in wild-type and glycoengineered Nicotiana benthamiana leaves and characterized the impact of different plant-specific N-glycans on RBD reactivity in serological assays. While the overall performance of the different RBD glycoforms was comparable to each other and to a human cell line produced RBD, there was a higher tendency toward false positive results with sera containing allergy-related CCD-antibodies when an RBD carrying ß1,2-xylose and core α1,3-fucose was used. These rare events could be further minimized by pre-incubating sera from allergic individuals with a CCD-inhibitor. Thereby, false positive signals obtained from anti-CCD antibodies, could be reduced by 90%, on average.

3.
Sci Rep ; 11(1): 18948, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556705

RESUMO

Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern which is stabilized by four disulfide bridges. We show here that Arabidopsis contains in addition to the proper plant defensins a group of 9 plant defensin-like (PdfL) genes. They are all expressed at low levels while GUS fusions of the promoters showed expression in most tissues with only minor differences. We produced two of the encoded peptides in E. coli and tested the antimicrobial activity in vitro. Both were highly active against fungi but had lower activity against bacteria. At higher concentrations hyperbranching and swollen tips, which are indicative of antimicrobial activity, were induced in Fusarium graminearum by both peptides. Overexpression lines for most PdfL genes were produced using the 35S CaMV promoter to study their possible in planta function. With the exception of PdfL4.1 these lines had enhanced resistance against F. oxysporum. All PDFL peptides were also transiently expressed in Nicotiana benthamiana leaves with agroinfiltration using the pPZP3425 vector. In case of PDFL1.4 this resulted in complete death of the infiltrated tissues after 7 days. All other PDFLs resulted only in various degrees of small necrotic lesions. In conclusion, our results show that at least some of the PdfL genes could function in plant resistance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Defensinas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Defensinas/genética , Resistência à Doença , Fusarium/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo
4.
Retrovirology ; 18(1): 17, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183026

RESUMO

BACKGROUND: HIV remains one of the most important health issues worldwide, with almost 40 million people living with HIV. Although patients develop antibodies against the virus, its high mutation rate allows evasion of immune responses. Some patients, however, produce antibodies that are able to bind to, and neutralise different strains of HIV. One such 'broadly neutralising' antibody is 'N6'. Identified in 2016, N6 can neutralise 98% of HIV-1 isolates with a median IC50 of 0.066 µg/mL. This neutralisation breadth makes N6 a very promising therapeutic candidate. RESULTS: N6 was expressed in a glycoengineered line of N. benthamiana plants (pN6) and compared to the mammalian cell-expressed equivalent (mN6). Expression at 49 mg/kg (fresh leaf tissue) was achieved in plants, although extraction and purification are more challenging than for most plant-expressed antibodies. N-glycoanalysis demonstrated the absence of xylosylation and a reduction in α(1,3)-fucosylation that are typically found in plant glycoproteins. The N6 light chain contains a potential N-glycosylation site, which was modified and displayed more α(1,3)-fucose than the heavy chain. The binding kinetics of pN6 and mN6, measured by surface plasmon resonance, were similar for HIV gp120. pN6 had a tenfold higher affinity for FcγRIIIa, which was reflected in an antibody-dependent cellular cytotoxicity assay, where pN6 induced a more potent response from effector cells than that of mN6. pN6 demonstrated the same potency and breadth of neutralisation as mN6, against a panel of HIV strains. CONCLUSIONS: The successful expression of N6 in tobacco supports the prospect of developing a low-cost, low-tech production platform for a monoclonal antibody cocktail to control HIV in low-to middle income countries.


Assuntos
Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Nicotiana/imunologia , Células HEK293 , Anticorpos Anti-HIV/isolamento & purificação , Infecções por HIV/imunologia , Infecções por HIV/terapia , HIV-1/genética , Humanos , Concentração Inibidora 50 , Testes de Neutralização , Folhas de Planta/genética , Nicotiana/genética
5.
Front Plant Sci ; 12: 636597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737944

RESUMO

Plant glycoproteins display a characteristic type of O-glycosylation where short arabinans or larger arabinogalactans are linked to hydroxyproline. The conversion of proline to 4-hydroxyproline is accomplished by prolyl-hydroxylases (P4Hs). Eleven putative Nicotiana benthamiana P4Hs, which fall in four homology groups, have been identified by homology searches using known Arabidopsis thaliana P4H sequences. One member of each of these groups has been expressed in insect cells using the baculovirus expression system and applied to synthetic peptides representing the O-glycosylated region of erythropoietin (EPO), IgA1, Art v 1 and the Arabidopsis thaliana glycoprotein STRUBBELIG. Unlike the situation in the moss Physcomitrella patens, where one particular P4H was mainly responsible for the oxidation of erythropoietin, the tobacco P4Hs exhibited rather similar activities, albeit with biased substrate preferences and preferred sites of oxidation. From a biotechnological viewpoint, this result means that silencing/knockout of a single P4H in N. benthamiana cannot be expected to result in the abolishment of the plant-specific oxidation of prolyl residues in a recombinant protein.

6.
Front Plant Sci ; 12: 630891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777069

RESUMO

N-glycosylation is a highly abundant protein modification present in all domains of life. Terminal sugar residues on complex-type N-glycans mediate various crucial biological processes in mammals such as cell-cell recognition or protein-ligand interactions. In plants, the Lewis A trisaccharide constitutes the only known outer-chain elongation of complex N-glycans. Lewis A containing complex N-glycans appear evolutionary conserved, having been identified in all plant species analyzed so far. Despite their ubiquitous occurrence, the biological function of this complex N-glycan modification is currently unknown. Here, we report the identification of Lewis A bearing glycoproteins from three different plant species: Arabidopsis thaliana, Nicotiana benthamiana, and Oryza sativa. Affinity purification via the JIM84 antibody, directed against Lewis A structures on complex plant N-glycans, was used to enrich Lewis A bearing glycoproteins, which were subsequently identified via nano-LC-MS. Selected identified proteins were recombinantly expressed and the presence of Lewis A confirmed via immunoblotting and site-specific N-glycan analysis. While the proteins identified in O. sativa are associated with diverse functions, proteins from A. thaliana and N. benthamiana are mainly involved in cell wall biosynthesis. However, a Lewis A-deficient mutant line of A. thaliana showed no change in abundance of cell wall constituents such as cellulose or lignin. Furthermore, we investigated the presence of Lewis A structures in selected accessions from the 1001 genome database containing amino acid variations in the enzymes required for Lewis A biosynthesis. Besides one relict line showing no detectable levels of Lewis A, the modification was present in all other tested accessions. The data provided here comprises the so far first attempt at identifying Lewis A bearing glycoproteins across different species and will help to shed more light on the role of Lewis A structures in plants.

7.
Gut Microbes ; 13(1): 1-14, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439092

RESUMO

Passive immunization with antibodies is a promising approach against enterotoxigenic Escherichia coli diarrhea, a prevalent disease in LMICs. The objective of this study was to investigate expression of a monoclonal anti-ETEC CfaE secretory IgA antibody in N. benthamiana plants, with a view to facilitating access to ETEC passive immunotherapy. SIgA1 and SIgA2 forms of mAb 68-81 were produced by co-expressing the light and engineered heavy chains with J chain and secretory component in N. benthamiana. Antibody expression and assembly were compared with CHO-derived antibodies by SDS-PAGE, western blotting, size-exclusion chromatography and LC-MS peptide mapping. N-linked glycosylation was assessed by rapid fluorescence/mass spectrometry and LC-ESI-MS. Susceptibility to gastric digestion was assessed in an in vitro model. Antibody function was compared for antigen binding, a Caco-2 cell-based ETEC adhesion assay, an ETEC hemagglutination inhibition assay and a murine in vivo challenge study. SIgA1 assembly appeared superior to SIgA2 in plants. Both sub-classes exhibited resistance to degradation by simulated gastric fluid, comparable to CHO-produced 68-61 SIgA1. The plant expressed SIgAs had more homogeneous N-glycosylation than CHO-derived SIgAs, but no alteration of in vitro functional activity was observed, including antibodies expressed in a plant line engineered for mammalian-like N glycosylation. The plant-derived SIgA2 mAb demonstrated protection against diarrhea in a murine infection model. Although antibody yield and purification need to be optimized, anti-ETEC SIgA antibodies produced in a low-cost plant platform are functionally equivalent to CHO antibodies, and provide promise for passive immunotherapy in LMICs.


Assuntos
Anticorpos Monoclonais/imunologia , Escherichia coli Enterotoxigênica/imunologia , Imunoglobulina A Secretora/imunologia , Nicotiana/metabolismo , Animais , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/metabolismo , Anticorpos Antibacterianos/uso terapêutico , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Afinidade de Anticorpos , Aderência Bacteriana/efeitos dos fármacos , Células CACO-2 , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/terapia , Ácido Gástrico/metabolismo , Glicosilação , Humanos , Imunoglobulina A Secretora/genética , Imunoglobulina A Secretora/metabolismo , Imunoglobulina A Secretora/uso terapêutico , Imunoterapia , Camundongos , Plantas Geneticamente Modificadas , Nicotiana/genética
8.
Front Chem ; 8: 346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426328

RESUMO

Production of monomeric IgA in mammalian cells and plant expression systems such as Nicotiana benthamiana is well-established and can be achieved by co-expression of the corresponding light and heavy chains. In contrast, the assembly of dimeric IgA requires the additional expression of the joining chain and remains challenging especially in plant-based systems. Here, we examined factors affecting the assembly and expression of HER2 binding dimeric IgA1 and IgA2m(2) variants transiently produced in N. benthamiana. While co-expression of the joining chain resulted in efficient formation of dimeric IgAs in HEK293F cells, a mixture of monomeric, dimeric and tetrameric variants was detected in plants. Mass-spectrometric analysis of site-specific glycosylation revealed that the N-glycan profile differed between monomeric and dimeric IgAs in the plant expression system. Co-expression of a single-subunit oligosaccharyltransferase from the protozoan Leishmania major in N. benthamiana increased the N-glycosylation occupancy at the C-terminal heavy chain tailpiece and changed the ratio of monomeric to dimeric IgAs. Our data demonstrate that N-glycosylation engineering is a suitable strategy to promote the formation of dimeric IgA variants in plants.

9.
Plant Biotechnol J ; 18(2): 402-414, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31301102

RESUMO

Plants can provide a cost-effective and scalable technology for production of therapeutic monoclonal antibodies, with the potential for precise engineering of glycosylation. Glycan structures in the antibody Fc region influence binding properties to Fc receptors, which opens opportunities for modulation of antibody effector functions. To test the impact of glycosylation in detail, on binding to human Fc receptors, different glycovariants of VRC01, a broadly neutralizing HIV monoclonal antibody, were generated in Nicotiana benthamiana and characterized. These include glycovariants lacking plant characteristic α1,3-fucose and ß1,2-xylose residues and glycans extended with terminal ß1,4-galactose. Surface plasmon resonance-based assays were established for kinetic/affinity evaluation of antibody-FcγR interactions, and revealed that antibodies with typical plant glycosylation have a limited capacity to engage FcγRI, FcγRIIa, FcγRIIb and FcγRIIIa; however, the binding characteristics can be restored and even improved with targeted glycoengineering. All plant-made glycovariants had a slightly reduced affinity to the neonatal Fc receptor (FcRn) compared with HEK cell-derived antibody. However, this was independent of plant glycosylation, but related to the oxidation status of two methionine residues in the Fc region. This points towards a need for process optimization to control oxidation levels and improve the quality of plant-produced antibodies.


Assuntos
Anticorpos Anti-HIV , Fragmentos Fc das Imunoglobulinas , Engenharia de Proteínas , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1 , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Polissacarídeos , Ligação Proteica , Nicotiana/genética
10.
J Biol Chem ; 294(38): 13995-14008, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31362986

RESUMO

Human immunoglobulin A (IgA) is the most prevalent antibody class at mucosal sites with an important role in mucosal defense. Little is known about the impact of N-glycan modifications of IgA1 and IgA2 on binding to the Fcα receptor (FcαRI), which is also heavily glycosylated at its extracellular domain. Here, we transiently expressed human epidermal growth factor receptor 2 (HER2)-binding monomeric IgA1, IgA2m(1), and IgA2m(2) variants in Nicotiana benthamiana ΔXT/FT plants lacking the enzymes responsible for generating nonhuman N-glycan structures. By coinfiltrating IgA with the respective glycan-modifying enzymes, we generated IgA carrying distinct homogenous N-glycans. We demonstrate that distinctly different N-glycan profiles did not influence antigen binding or the overall structure and integrity of the IgA antibodies but did affect their thermal stability. Using size-exclusion chromatography, differential scanning and isothermal titration calorimetry, surface plasmon resonance spectroscopy, and molecular modeling, we probed distinct IgA1 and IgA2 glycoforms for binding to four different FcαRI glycoforms and investigated the thermodynamics and kinetics of complex formation. Our results suggest that different N-glycans on the receptor significantly contribute to binding affinities for its cognate ligand. We also noted that full-length IgA and FcαRI form a mixture of 1:1 and 1:2 complexes tending toward a 1:1 stoichiometry due to different IgA tailpiece conformations that make it less likely that both binding sites are simultaneously occupied. In conclusion, N-glycans of human IgA do not affect its structure and integrity but its thermal stability, and FcαRI N-glycans significantly modulate binding affinity to IgA.


Assuntos
Imunoglobulina A/metabolismo , Polissacarídeos/química , Receptores Fc/metabolismo , Sítios de Ligação , Glicosilação , Células HEK293 , Humanos , Imunoglobulina A/química , Cinética , Simulação de Dinâmica Molecular , Estabilidade Proteica , Estrutura Quaternária de Proteína , Receptores Fc/química , Receptores Fc/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Termodinâmica , Nicotiana/metabolismo
11.
Plant Physiol ; 180(2): 859-873, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30971450

RESUMO

The Golgi apparatus consists of stacked cisternae filled with enzymes that facilitate the sequential and highly controlled modification of glycans from proteins that transit through the organelle. Although the glycan processing pathways have been extensively studied, the underlying mechanisms that concentrate Golgi-resident glycosyltransferases and glycosidases in distinct Golgi compartments are poorly understood. The single-pass transmembrane domain (TMD) of n-acetylglucosaminyltransferaseI (GnTI) accounts for its steady-state distribution in the cis/medial-Golgi. Here, we investigated the contribution of individual amino acid residues within the TMD of Arabidopsis (Arabidopsis thaliana) and Nicotiana tabacum GnTI toward Golgi localization and n-glycan processing. Conserved sequence motifs within the TMD were replaced with those from the established trans-Golgi enzyme α2,6-sialyltransferase and site-directed mutagenesis was used to exchange individual amino acid residues. Subsequent subcellular localization of fluorescent fusion proteins and n-glycan profiling revealed that a conserved Gln residue in the GnTI TMD is essential for its cis/medial-Golgi localization. Substitution of the crucial Gln residue with other amino acids resulted in mislocalization to the vacuole and impaired n-glycan processing in vivo. Our results suggest that sequence-specific features of the GnTI TMD are required for its interaction with a Golgi-resident adaptor protein or a specific lipid environment that likely promotes coat protein complexI-mediated retrograde transport, thus maintaining the steady-state distribution of GnTI in the cis/medial-Golgi of plants.


Assuntos
Aminoácidos/metabolismo , Arabidopsis/enzimologia , Complexo de Golgi/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Mutação/genética , Proteínas de Plantas/genética , Polissacarídeos/metabolismo , Domínios Proteicos , Subunidades Proteicas/metabolismo , Transporte Proteico , Vacúolos/metabolismo
12.
Circ Res ; 124(2): 243-255, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30582450

RESUMO

RATIONALE: Endothelial colony forming cells (ECFCs) or late blood outgrowth endothelial cells can be isolated from human cord or peripheral blood, display properties of endothelial progenitors, home into ischemic tissues and support neovascularization in ischemic disease models. OBJECTIVE: To assess the functions of CYTL1 (cytokine-like 1), a factor we found preferentially produced by ECFCs, in regard of vessel formation. METHODS AND RESULTS: We show by transcriptomic analysis that ECFCs are distinguished from endothelial cells of the vessel wall by production of high amounts of CYTL1. Modulation of expression demonstrates that the factor confers increased angiogenic sprouting capabilities to ECFCs and can also trigger sprouting of mature endothelial cells. The data further display that CYTL1 can be induced by hypoxia and that it functions largely independent of VEGF-A (vascular endothelial growth factor-A). By recombinant production of CYTL1 we confirm that the peptide is indeed a strong proangiogenic factor and induces sprouting in cellular assays and functional vessel formation in animal models comparable to VEGF-A. Mass spectroscopy corroborates that CYTL1 is specifically O-glycosylated on 2 neighboring threonines in the C-terminal part and this modification is important for its proangiogenic bioactivity. Further analyses show that the factor does not upregulate proinflammatory genes and strongly induces several metallothionein genes encoding anti-inflammatory and antiapoptotic proteins. CONCLUSIONS: We conclude that CYTL1 can mediate proangiogenic functions ascribed to endothelial progenitors such as ECFCs in vivo and may be a candidate to support vessel formation and tissue regeneration in ischemic pathologies.


Assuntos
Proteínas Angiogênicas/metabolismo , Comunicação Autócrina , Proteínas Sanguíneas/metabolismo , Neovascularização da Córnea , Citocinas/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Comunicação Parácrina , Proteínas Angiogênicas/genética , Animais , Proteínas Sanguíneas/genética , Hipóxia Celular , Citocinas/genética , Modelos Animais de Doenças , Feminino , Glicosilação , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Via Secretória , Transdução de Sinais , Esferoides Celulares , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Plant Biotechnol J ; 16(10): 1700-1709, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29479800

RESUMO

N-glycosylation is critical for recombinant glycoprotein production as it influences the heterogeneity of products and affects their biological function. In most eukaryotes, the oligosaccharyltransferase is the central-protein complex facilitating the N-glycosylation of proteins in the lumen of the endoplasmic reticulum (ER). Not all potential N-glycosylation sites are recognized in vivo and the site occupancy can vary in different expression systems, resulting in underglycosylation of recombinant glycoproteins. To overcome this limitation in plants, we expressed LmSTT3D, a single-subunit oligosaccharyltransferase from the protozoan Leishmania major transiently in Nicotiana benthamiana, a well-established production platform for recombinant proteins. A fluorescent protein-tagged LmSTT3D variant was predominately found in the ER and co-located with plant oligosaccharyltransferase subunits. Co-expression of LmSTT3D with immunoglobulins and other recombinant human glycoproteins resulted in a substantially increased N-glycosylation site occupancy on all N-glycosylation sites except those that were already more than 90% occupied. Our results show that the heterologous expression of LmSTT3D is a versatile tool to increase N-glycosylation efficiency in plants.


Assuntos
Glicosilação , Hexosiltransferases/genética , Leishmania major/genética , Proteínas de Membrana/genética , Nicotiana/metabolismo , Proteínas Recombinantes/metabolismo , Retículo Endoplasmático/metabolismo , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Plantas Geneticamente Modificadas
14.
J Proteome Res ; 16(7): 2560-2570, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28516782

RESUMO

The full potential of recombinant Immunoglobulin A as therapeutic antibody is not fully explored, owing to the fact that structure-function relationships of these extensively glycosylated proteins are not well understood. Here monomeric IgA1, IgA2m(1), and IgA2m(2) variants of the anti-HER2 antibody (IgG1) trastuzumab were expressed in glyco-engineered Nicotiana benthamiana plants and in human HEK293-6E cells. All three IgA isotypes were purified and subjected to biophysical and biochemical characterization. While no differences in assembly, antigen binding, and glycosylation occupancy were observed, both systems vary tremendously in terms of glycan structures and heterogeneity of glycosylation. Mass-spectrometric analysis of site-specific glycosylation revealed that plant-produced IgAs carry mainly complex-type biantennary N-glycans. HEK293-6E-produced IgAs, on the contrary, showed very heterogeneous N-glycans with high levels of sialylation, core-fucose, and the presence of branched structures. The site-specific analysis revealed major differences between the individual N-glycosylation sites of each IgA subtype. Moreover, the proline-rich hinge region from HEK293-6E cell-derived IgA1 was occupied with mucin-type O-glycans, whereas IgA1 from N. benthamiana displayed numerous plant-specific modifications. Interestingly, a shift in unfolding of the CH2 domain of plant-produced IgA toward lower temperatures can be observed with differential scanning calorimetry, suggesting that distinct glycoforms affect the thermal stability of IgAs.


Assuntos
Imunoglobulina A/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Polissacarídeos/química , Receptor ErbB-2/metabolismo , Trastuzumab/metabolismo , Especificidade de Anticorpos , Sequência de Carboidratos , Expressão Gênica , Glicosilação , Células HEK293 , Humanos , Imunoglobulina A/química , Imunoglobulina A/classificação , Imunoglobulina A/genética , Isotipos de Imunoglobulinas/química , Isotipos de Imunoglobulinas/classificação , Isotipos de Imunoglobulinas/genética , Mucinas/química , Mucinas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Receptor ErbB-2/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Nicotiana/genética , Nicotiana/metabolismo , Trastuzumab/química
15.
J Proteomics ; 161: 81-87, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28400175

RESUMO

The increasing biotechnological interest in human IgE antibodies demands advanced systems which allow their proper expression. However, this is still a challenge due to the complexity of the molecule, particularly regarding the diverse N-glycosylation pattern. Here, we present the expression of recombinant IgE in wild type and glycan-engineered Nicotiana benthamiana plants and in-depth N-glycosylation analyses. Mass spectrometric profiling revealed that plant IgE has a site occupancy rate that ranges from non-occupied at glycosite 6 (GS6) to 100% occupancy at GS1 and 2. Similarly to human cell-derived IgE, plant versions carry complex N-glycans at GS1-5 and oligomannosidic structures at GS7. Computational modelling suggests that spatial position (or orientation) of glycans can impair processing or site occupancy on adjacent glycosites. IgE expressed in glycoengineered and wild type plants carry, respectively, GnGn and plant-typical GnGnXF structures at large homogeneity. This contrasts with the glycan diversity of HEK cell-derived IgE, carrying at least 20 different glycoforms. Importantly, IgE glycoengineering allows the control of its glycosylation, a so far unmet need when using well-established expression systems. This enables the elucidation of possible carbohydrate-dependent IgE functions. SIGNIFICANCE: Targeted glycosylation of recombinant proteins may provide an advantage in therapeutic applications. Despite increasing biotechnological interest in IgE antibodies, knowledge and impact of glycosylation on this antibody class are scarce. With the ability to glyco-engineer recombinant IgE, we provide an important step towards the generation of IgE with other targeted N-glycans. This will facilitate detailed structure-function studies and may lead to the production of IgE with optimized activities.


Assuntos
Anticorpos Monoclonais Humanizados , Imunoglobulina E/genética , Plantas Geneticamente Modificadas/genética , Proteômica/métodos , Anticorpos Monoclonais Humanizados/genética , Sítios de Ligação , Glicosilação , Humanos , Imunoglobulina E/química , Polissacarídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Nicotiana/genética
16.
Plant Biotechnol J ; 15(2): 197-206, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27421111

RESUMO

Plants are attractive hosts for the production of recombinant glycoproteins for therapeutic use. Recent advances in glyco-engineering facilitate the elimination of nonmammalian-type glycosylation and introduction of missing pathways for customized N-glycan formation. However, some therapeutically relevant recombinant glycoproteins exhibit unwanted truncated (paucimannosidic) N-glycans that lack GlcNAc residues at the nonreducing terminal end. These paucimannosidic N-glycans increase product heterogeneity and may affect the biological function of the recombinant drugs. Here, we identified two enzymes, ß-hexosaminidases (HEXOs) that account for the formation of paucimannosidic N-glycans in Nicotiana benthamiana, a widely used expression host for recombinant proteins. Subcellular localization studies showed that HEXO1 is a vacuolar protein and HEXO3 is mainly located at the plasma membrane in N. benthamiana leaf epidermal cells. Both enzymes are functional and can complement the corresponding HEXO-deficient Arabidopsis thaliana mutants. In planta expression of HEXO3 demonstrated that core α1,3-fucose enhances the trimming of GlcNAc residues from the Fc domain of human IgG. Finally, using RNA interference, we show that suppression of HEXO3 expression can be applied to increase the amounts of complex N-glycans on plant-produced human α1-antitrypsin.


Assuntos
Nicotiana/metabolismo , Polissacarídeos/biossíntese , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Membrana Celular/metabolismo , Genes de Plantas , Glicosilação , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Nicotiana/enzimologia , Nicotiana/genética , Vacúolos/metabolismo
17.
Proc Natl Acad Sci U S A ; 113(34): 9498-503, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27444013

RESUMO

Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions.

18.
J Biotechnol ; 227: 120-130, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27063138

RESUMO

Human diamine oxidase (hDAO) efficiently degrades polyamines and histamine. Reduced enzyme activities might cause complications during pregnancy and be involved in histamine intolerance. So far hDAO has been characterized after isolation from either native sources or the heterologous production in insect cells. Accessibility to human enzyme is limited and insect cells produce non-human glycosylation patterns that may alter its biochemical properties. We present the heterologous expression of hDAO in Chinese Hamster Ovary (CHO) cells and a three step purification protocol. Analysis of metal content using ICP-MS revealed that 93% of the active sites were occupied by copper. Topaquinone (TPQ) cofactor content was determined using phenylhydrazine titration. Ninety-four percent of DAO molecules contained TPQ and therefore the copper content at the active site was indirectly confirmed. Mass spectrometric analysis was conducted to verify sequence integrity of the protein and to assess the glycosylation profile. Electronic circular dichroism and UV-vis spectra data were used to characterize structural properties. The substrate preference and kinetic parameters were in accordance with previous publications. The establishment of a recombinant production system for hDAO enables us to generate decent amounts of protein with negligible impurities to address new scientific questions.


Assuntos
Amina Oxidase (contendo Cobre)/biossíntese , Proteínas Recombinantes/biossíntese , Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/isolamento & purificação , Sequência de Aminoácidos , Animais , Western Blotting , Células CHO , Cromatografia Líquida , Dicroísmo Circular , Coenzimas/metabolismo , Cricetinae , Cricetulus , Di-Hidroxifenilalanina/análogos & derivados , Di-Hidroxifenilalanina/metabolismo , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Glicosilação , Humanos , Cinética , Metais/metabolismo , Peptídeos/química , Fenil-Hidrazinas/metabolismo , Polissacarídeos/química , Estrutura Secundária de Proteína , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Especificidade por Substrato
19.
Proteomics ; 16(9): 1321-30, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26960168

RESUMO

With mice being the top model organism in immunology and with Fc glycosylation being increasingly recognized as important modulator of antibody function, the time has come to take a look at the glycosylation of mouse IgG isotypes. Tryptic glycopeptides of mouse IgG1, IgG2, and IgG3 differ in mass and so these three isoforms can be easily discriminated by MS. Commercial IgG contained a rare IgG1 variant but no IgG3, which, however, was found in sera of C57BL/6 and BALB/c mice. These strains deviated with regard to IgG2a and IgG2b alleles. The Ig2a B allele was not observed in any of the four samples investigated. All a/c isotypes contain the same glycopeptide sequence, which deviates from that of IgG2b by containing Leu instead of Ile. The Leu/Ile glycopeptide variants were separated by RP chromatography and the order of elution was determined. The major glycoforms on all isotypes were fucosylated with no and one galactose (GnGnF and GnAF) followed by fully galactosylated AAF and smaller amounts of mono- and disialylated N-glycans. In the commercial serum pool, the relative ratios of glycans differed between isotypes. Sialic acid exclusively occurred as N-glycolylneuraminic acid. Fucosylation was essentially complete. No bisected and no α1,3-galactosylated glycans were found.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Isotipos de Imunoglobulinas/química , Alelos , Sequência de Aminoácidos , Animais , Glicosilação , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Imunoglobulina G/sangue , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/classificação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/isolamento & purificação , Ácidos Neuramínicos/química , Ácidos Neuramínicos/isolamento & purificação , Mapeamento de Peptídeos , Peptídeos/química , Peptídeos/imunologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Front Plant Sci ; 7: 18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858738

RESUMO

The production of therapeutic antibodies to combat pathogens and treat diseases, such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG), less effort has been undertaken to express immunoglobulin A (IgA), which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumor activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered ΔXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that ΔXT/FT N. benthamiana plants can be engineered toward the production of recombinant IgA1 with defined human-type N- and O-linked glycans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA