Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Hematol ; 103(4): 1221-1233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413410

RESUMO

In low-risk Myelodysplastic Neoplasms (MDS), increased activity of apoptosis-promoting factors such as tumor necrosis factor (TNFα) and pro-apoptotic Fas ligand (CD95L) have been described as possible pathomechanisms leading to impaired erythropoiesis. Asunercept (APG101) is a novel therapeutic fusion protein blocking CD95, which has previously shown partial efficacy in reducing transfusion requirement in a clinical phase I trial for low-risk MDS patients (NCT01736436; 2012-11-26). In the current study we aimed to evaluate the effect of Asunercept therapy on the clonal bone marrow composition to identify potential biomarkers to predict response. Bone marrow samples of n = 12 low-risk MDS patients from the above referenced clinical trial were analyzed by serial deep whole exome sequencing in a total of n = 58 time points. We could distinguish a mean of 3.5 molecularly defined subclones per patient (range 2-6). We observed a molecular response defined as reductions of dominant clone sizes by a variant allele frequency (VAF) decrease of at least 10% (mean 20%, range: 10.5-39.2%) in dependency of Asunercept treatment in 9 of 12 (75%) patients. Most of this decline in clonal populations was observed after completion of 12 weeks treatment. Particularly early and pronounced reductions of clone sizes were found in subclones driven by mutations in genes involved in regulation of methylation (n = 1 DNMT3A, n = 1 IDH2, n = 1 TET2). Our results suggest that APG101 could be efficacious in reducing clone sizes of mutated hematopoietic cells in the bone marrow of Myelodysplastic Neoplasms, which warrants further investigation.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Células Clonais/patologia , Medula Óssea/patologia , Apoptose , Mutação
2.
Haematologica ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916386

RESUMO

Inhibitors of anti-apoptotic BCL-2 family proteins in combination with chemotherapy and hypomethylating agents (HMAs) are promising therapeutic approaches in acute myeloid leukemia (AML) and high-risk myelodysplastic syndromes (MDS). Alvocidib, a cyclin-dependent kinase 9 (CDK9) inhibitor and indirect transcriptional repressor of the anti-apoptotic factor MCL-1, has previously shown clinical activity in AML. Availability of biomarkers for response to the alvocidib + 5- AZA could also extend the rationale of this treatment concept to high-risk MDS. In this study, we performed a comprehensive in vitro assessment of alvocidib and 5-AZA effects in n=45 high-risk MDS patients. Our data revealed additive cytotoxic effects of the combination treatment. Mutational profiling of MDS samples identified ASXL1 mutations as predictors of response. Further, increased response rates were associated with higher gene-expression of the pro-apoptotic factor NOXA in ASXL1 mutated samples. The higher sensitivity of ASXL1 mutant cells to the combination treatment was confirmed in vivo in ASXL1Y588X transgenic mice. Overall, our study demonstrated augmented activity for the alvocidib + 5-AZA combination in higher-risk MDS and identified ASXL1 mutations as a biomarker of response for potential stratification studies.

3.
Stem Cell Res Ther ; 14(1): 156, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287056

RESUMO

BACKGROUND: Robust and reliable in vitro and in vivo models of primary cells are necessary to study the pathomechanisms of Myelodysplastic Neoplasms (MDS) and identify novel therapeutic strategies. MDS-derived hematopoietic stem and progenitor cells (HSPCs) are reliant on the support of bone marrow (BM) derived mesenchymal stroma cells (MSCs). Therefore, isolation and expansion of MCSs are essential for successfully modeling this disease. For the clinical use of healthy MSCs isolated from human BM, umbilical cord blood or adipose tissue, several studies showed that xeno-free (XF) culture conditions resulted in superior growth kinetics compared to MSCs cultured in the presence of fetal bovine serum (FBS). In this present study, we investigate, whether the replacement of a commercially available MSC expansion medium containing FBS with a XF medium is beneficial for the expansion of MSCs derived from BM of MDS patients which are often difficult to cultivate. METHODS: MSCs isolated from BM of MDS patients were cultured and expanded in MSC expansion medium with FBS or XF supplement. Subsequently, the impact of culture media on growth kinetics, morphology, immunophenotype, clonogenic potential, differentiation capacity, gene expression profiles and ability to engraft in immunodeficient mouse models was evaluated. RESULTS: Significant higher cell numbers with an increase in clonogenic potential were observed during culture of MDS MSCs with XF medium compared to medium containing FBS. Differential gene expression showed an increase in transcripts associated with MSC stemness after expansion with XF. Furthermore, immunophenotypes of the MSCs and their ability to differentiate into osteoblasts, adipocytes or chondroblasts remained stable. MSCs expanded with XF media were similarly supportive for creating MDS xenografts in vivo as MSCs expanded with FBS. CONCLUSION: Our data indicate that with XF media, higher cell numbers of MDS MSCs can be obtained with overall improved characteristics in in vitro and in vivo experimental models.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Meios de Cultura Livres de Soro , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo , Proliferação de Células , Células Cultivadas
4.
Nat Commun ; 14(1): 1497, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932114

RESUMO

Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling. We further confirm these results in vivo using a bone marrow niche-dependent MN xenograft model in female NSG mice, in which we additionally demonstrate an enforced reduction of dominant clones as well as significant attenuation of disease expansion and normalization of spleen sizes. Overall, these results lay out a strong pre-clinical rationale for efficacy of combination treatment of 5-AZA with PXS-5505 especially for anemic MN.


Assuntos
Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Neoplasias , Humanos , Feminino , Camundongos , Animais , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Eritropoese , Proteína-Lisina 6-Oxidase , Células-Tronco Hematopoéticas , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Transtornos Mieloproliferativos/patologia , Neoplasias/patologia
5.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675239

RESUMO

The erythroferrone gene (ERFE), also termed CTRP15, belongs to the C1q tumor necrosis factor-related protein (CTRP) family. Despite multiple reports about the involvement of CTRPs in cancer, the role of ERFE in cancer progression is largely unknown. We previously found that ERFE was upregulated in erythroid progenitors in myelodysplastic syndromes and strongly predicted overall survival. To understand the potential molecular interactions and identify cues for further functional investigation and the prognostic impact of ERFE in other malignancies, we performed a pan-cancer in silico analysis utilizing the Cancer Genome Atlas datasets. Our analysis shows that the ERFE mRNA is significantly overexpressed in 22 tumors and affects the prognosis in 11 cancer types. In certain tumors such as breast cancer and adrenocortical carcinoma, ERFE overexpression has been associated with the presence of oncogenic mutations and a higher tumor mutational burden. The expression of ERFE is co-regulated with the factors and pathways involved in cancer progression and metastasis, including activated pathways of the cell cycle, extracellular matrix/tumor microenvironment, G protein-coupled receptor, NOTCH, WNT, and PI3 kinase-AKT. Moreover, ERFE expression influences intratumoral immune cell infiltration. Conclusively, ERFE is aberrantly expressed in pan-cancer and can potentially function as a prognostic biomarker based on its putative functions during tumorigenesis and tumor development.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Hormônios Peptídicos , Humanos , Prognóstico , Hormônios Peptídicos/genética , Hepcidinas/metabolismo , Neoplasias/genética , Microambiente Tumoral
6.
Leukemia ; 36(1): 236-247, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34172896

RESUMO

Preclinical research of myelodysplastic syndromes (MDSs) is hampered by a lack of feasible disease models. Previously, we have established a robust patient-derived xenograft (PDX) model for MDS. Here we demonstrate for the first time that this model is applicable as a preclinical platform to address pending clinical questions by interrogating the efficacy and safety of the thrombopoietin receptor agonist eltrombopag. Our preclinical study included n = 49 xenografts generated from n = 9 MDS patient samples. Substance efficacy was evidenced by FACS-based human platelet quantification and clonal bone marrow evolution was reconstructed by serial whole-exome sequencing of the PDX samples. In contrast to clinical trials in humans, this experimental setup allowed vehicle- and replicate-controlled analyses on a patient-individual level deciphering substance-specific effects from natural disease progression. We found that eltrombopag effectively stimulated thrombopoiesis in MDS PDX without adversely affecting the patients' clonal composition. In conclusion, our MDS PDX model is a useful tool for testing new therapeutic concepts in MDS preceding clinical trials.


Assuntos
Benzoatos/uso terapêutico , Hidrazinas/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Pirazóis/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Exp Hematol ; 107: 38-50, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34952140

RESUMO

Patient-derived xenograft (PDX) models have emerged as versatile preclinical platforms for investigation of functional pathomechanisms in myelodysplastic syndromes (MDS) and other myeloid neoplasms. However, despite increasingly improved methodology, engraftment efficiencies frequently remain low. Humanized three-dimensional scaffold models (ossicle xenotransplantation models) in immunocompromised mice have recently been found to enable improved engraftment rates of healthy and malignant human hematopoiesis. We therefore interrogated the feasibility of using four different three-dimensional ossicle-based PDX models for application with primary MDS samples. In a fully standardized comparison, we evaluated scaffold materials such as Gelfoam, extracellular matrix (ECM), and human or xenogenous bone substance in comparison to intrafemoral (IF) co-injection of bone marrow (BM)-derived mesenchymal stromal cells (MSCs) and CD34+ hematopoietic stem and progenitor cells (HSPCs). Our study included13 primary MDS patient samples transplanted in parallel according to these five different conditions. Engraftment of MDS samples was assessed by flow cytometry, immunohistological staining, and molecular validation. We determined that three-dimensional ossicle-based methods achieved higher relative rates of engraftment and enabled long-term retrievability of patient-derived MSCs from implanted ossicles. In summary, HSPCs and MSCs derived from MDS BM, which did not significantly engraft in NSG mice after intrafemoral injection, were able to colonize humanized scaffold models. Therefore, these models are promising new xenotransplantation techniques for addressing preclinical and functional questions of the interaction between hematopoiesis and the BM niche in MDS.


Assuntos
Células-Tronco Mesenquimais , Síndromes Mielodisplásicas , Animais , Células da Medula Óssea/patologia , Modelos Animais de Doenças , Hematopoese , Células-Tronco Hematopoéticas/patologia , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Síndromes Mielodisplásicas/patologia , Transplante Heterólogo
8.
Nat Commun ; 12(1): 6170, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697318

RESUMO

The bone marrow (BM) stroma in myeloid neoplasms is altered and it is hypothesized that this cell compartment may also harbor clonal somatically acquired mutations. By exome sequencing of in vitro expanded mesenchymal stromal cells (MSCs) from n = 98 patients with myelodysplastic syndrome (MDS) and n = 28 healthy controls we show that these cells accumulate recurrent mutations in genes such as ZFX (n = 8/98), RANK (n = 5/98), and others. MDS derived MSCs display higher mutational burdens, increased replicative stress, senescence, inflammatory gene expression, and distinct mutational signatures as compared to healthy MSCs. However, validation experiments in serial culture passages, chronological BM aspirations and backtracking of high confidence mutations by re-sequencing primary sorted MDS MSCs indicate that the discovered mutations are secondary to in vitro expansion but not present in primary BM. Thus, we here report that there is no evidence for clonal mutations in the BM stroma of MDS patients.


Assuntos
Medula Óssea/patologia , Células-Tronco Mesenquimais/patologia , Síndromes Mielodisplásicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/metabolismo , Células Cultivadas , Exoma/genética , Feminino , Genótipo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/patologia , Fenótipo , Microambiente Tumoral
9.
Haematologica ; 106(11): 2906-2917, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054116

RESUMO

Somatic mutations in genes coding for splicing factors, e.g. SF3B1, U2AF1, SRSF2, and others are found in approximately 50% of patients with Myelodysplastic Syndromes (MDS). These mutations have been predicted to frequently occur early in the mutational hierarchy of the disease therefore making them particularly attractive potential therapeutic targets. Recent studies in cell lines engineered to carry splicing factor mutations have revealed a strong association with elevated levels of DNA:RNA intermediates (R-loops) and a dependency on proper ATR function. However, data confirming this hypothesis in a representative cohort of primary MDS patient samples have so far been missing. Using CD34+ cells isolated from MDS patients with and without splicing factor mutations as well as healthy controls we show that splicing factor mutation-associated R-loops lead to elevated levels of replication stress and ATR pathway activation. Moreover, splicing factor mutated CD34+ cells are more susceptible to pharmacological inhibition of ATR resulting in elevated levels of DNA damage, cell cycle blockade, and cell death. This can be enhanced by combination treatment with low-dose splicing modulatory compound Pladienolide B. We further confirm the direct association of R-loops and ATR sensitivity with the presence of a splicing factor mutation using lentiviral overexpression of wild-type and mutant SRSF2 P95H in cord blood CD34+ cells. Collectively, our results from n=53 MDS patients identify replication stress and associated ATR signaling to be critical pathophysiological mechanisms in primary MDS CD34+ cells carrying splicing factor mutations, and provide a preclinical rationale for targeting ATR signaling in these patients.


Assuntos
Síndromes Mielodisplásicas , Fosfoproteínas , Humanos , Mutação , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Fosfoproteínas/genética , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fator de Processamento U2AF/genética
11.
Cancer Res ; 78(1): 129-142, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29066511

RESUMO

Breast and prostate cancer cells home to the bone marrow, where they presumably hijack the hematopoietic stem cell niche. We characterize here the elusive premetastatic niche by examining the role of mesenchymal stromal cells (MSC) in cancer cell homing. Decreasing the number of MSC pharmacologically enhanced cancer cell homing to the bone marrow in mice. In contrast, increasing the number of these MSCs by various interventions including G-CSF administration diminished cancer cell homing. The MSC subpopulation that correlated best with cancer cells expressed stem, endothelial, and pericytic cell markers, suggesting these cells represent an undifferentiated component of the niche with vascular commitment. In humans, a MSC subpopulation carrying markers for endothelial and pericytic cells was lower in the presence of cytokeratin+ cells in bone marrow. Taken together, our data show that a subpopulation of MSC with both endothelial and pericytic cell surface markers suppresses the homing of cancer cells to the bone marrow. Similar to the presence of cytokeratin+ cells in the bone marrow, this MSC subpopulation could prove useful in determining the risk of metastatic disease, and its manipulation might offer a new possibility for diminishing bone metastasis formation.Significance: These findings establish an inverse relationship between a subpopulation of mesenchymal stromal cells and cancer cells in the bone marrow. Cancer Res; 78(1); 129-42. ©2017 AACR.


Assuntos
Medula Óssea/patologia , Neoplasias da Mama/patologia , Células-Tronco Mesenquimais/patologia , Neoplasias da Próstata/patologia , Animais , Medula Óssea/efeitos dos fármacos , Linhagem Celular Tumoral , Difosfonatos/farmacologia , Feminino , Humanos , Imidazóis/farmacologia , Masculino , Camundongos Mutantes , Hormônio Paratireóideo/farmacologia , Prenilação , Nicho de Células-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Zoledrônico
12.
J Bone Miner Res ; 32(1): 70-81, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27427791

RESUMO

Patients with cholestatic liver disease experience increased fracture risk. Higher circulating levels of a fibronectin isoform called oncofetal fibronectin (oFN) were detected in a subset of such patients. Administering this isoform to mice suppresses osteoblast differentiation and diminishes bone mineral density in vivo, suggesting it is responsible for bone loss in cholestatic liver disease. The aim of this study was to define the mechanism by which oFN affects osteoblast function and evaluate possible modifiers in experimental hepatic osteodystrophy. The fibronectin isoform oFN is characterized by the presence of various glycosylations. In line with this, adding oFN that underwent enzymatic O-deglycosylation to osteoblasts normalized nodule formation in vitro. Of three possible O-glycosylation sites in oFN, only a mutation at AA 33 of the variable region or binding of this glycosylated site with an antibody normalized osteoblast differentiation. Because the responsible site is located in the variable region of fibronectin, which binds to α4ß1 or α4ß7 integrins, these integrins were evaluated. We show that integrin α4ß1 mediates the inhibitory effect of oFN both in vitro as well as in vivo. In a hepatic osteodystrophy mouse model, we demonstrate that liver fibrosis is associated with increased circulating oFN and diminished BMD. In addition, trabecular bone loss induced by oFN injection or fibrosis induction could be prevented by either administering an antibody that binds to α4 integrin (PS/2) or the CS1 peptide, which contains a binding site for α4ß1 integrin. In summary, oFN inhibits osteoblast activity. This is because of an O-glycosylation in the variable region that results in decreased integrin-mediated signaling. This deleterious effect can be thwarted by binding α4ß1 integrin. Thus, we have characterized the defect and the receptor mediating bone loss in patients with hepatic osteodystrophy and evaluated possible therapeutic interventions in a murine model. © 2016 American Society for Bone and Mineral Research.


Assuntos
Doenças Ósseas/complicações , Doenças Ósseas/metabolismo , Fibronectinas/metabolismo , Integrina alfa4beta1/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Fibronectinas/administração & dosagem , Glicosilação , Humanos , Camundongos , Osteoblastos/metabolismo , Peptídeos/metabolismo
13.
PLoS Biol ; 14(9): e1002562, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27653627

RESUMO

Osteoblasts lining the inner surface of bone support hematopoietic stem cell differentiation by virtue of proximity to the bone marrow. The osteoblasts also modify their own differentiation by producing various isoforms of fibronectin (FN). Despite evidence for immune regulation by osteoblasts, there is limited knowledge of how osteoblasts modulate cells of the immune system. Here, we show that extra domain A (EDA)-FN produced by osteoblasts increases arginase production in myeloid-derived cells, and we identify α5ß1 as the mediating receptor. In different mouse models of cancer, osteoblasts or EDA-FN was found to up-regulate arginase-1 expression in myeloid-derived cells, resulting in increased cancer growth. This harmful effect can be reduced by interfering with the integrin α5ß1 receptor or inhibiting arginase. Conversely, in tissue injury, the expression of arginase-1 is normally beneficial as it dampens the immune response to allow wound healing. We show that EDA-FN protects against excessive fibrotic tissue formation in a liver fibrosis model. Our results establish an immune regulatory function for EDA-FN originating from the osteoblasts and identify new avenues for enhancing the immune reaction against cancer.

14.
J Hepatol ; 62(3): 625-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24946284

RESUMO

BACKGROUND & AIMS: Common pathogenic steps in liver fibrosis are inflammation and accumulation of extracellular matrix proteins including collagen, which lead to disruption of tissue microarchitecture and liver dysfunction. Adequate fibronectin fibril formation is required for collagen matrix deposition in several cell types in vitro. We therefore hypothesized that preventing fibronectin fibril assembly will result in decreased collagen matrix accumulation, and hence diminish liver injury associated with fibrosis. METHODS: In vitro studies on hepatic stellate cells and in vivo studies in mice were performed. RESULTS: In vitro studies on hepatic stellate cells confirmed that a fibronectin assembly inhibitor, pUR4 diminishes the amount of both fibronectin and collagen, accumulating in the extracellular matrix, without affecting their production. Induction of fibrosis using CCl4 or DMN was therefore combined with pUR4-treatment. pUR4 normalized the amount of fibrotic tissue that accumulated with injury, and improved liver function. Specifically, pUR4-treatment decreased collagen accumulation, without changing its mRNA expression. Most interestingly, we did not detect any changes in Kupffer cell numbers (F4/80+) or α-smooth muscle actin expressing hepatic stellate cell numbers. Further, there was no impact on TGF-ß or TNF-α. Thus, in line with the in vitro findings, decreased fibrosis is due to inhibition of matrix accumulation and not a direct effect on these cells. CONCLUSIONS: In summary, a peptide that blocks fibronectin deposition results in decreased collagen accumulation and improved liver function during liver fibrogenesis. Thus, fibronectin matrix modulation offers a therapeutic benefit in preclinical models of liver fibrosis.


Assuntos
Fibronectinas/antagonistas & inibidores , Cirrose Hepática Experimental/prevenção & controle , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Fibronectinas/genética , Fibronectinas/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática Experimental/etiologia , Cirrose Hepática Experimental/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Peptídeos/farmacologia , Multimerização Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
15.
Clin Biochem ; 46(15): 1383-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23608353

RESUMO

OBJECTIVES: Human CD26 is co-stimulatory for lymphocytes, circulates in a soluble form in blood (sCD26), and has intrinsic dipeptidyl peptidase IV (DPPIV) activity. Associations between CD26 expression on the surface of T cells (CD26+/CD3+) and acute rejection and between (CD26+/CD3+)/DPPIV and clinical immunosuppression have been reported. These results encouraged the investigation of CD26 as a potential biomarker to optimize immunosuppressive therapy. To better understand the significance of CD26, a comparative study of CD26 expression on CD3+ cells, sCD26 concentration, and DPPIV activity in healthy persons (HP) and kidney transplant recipients (KTR) was performed. DESIGN AND METHODS: Thirty-one HP and 34 KTR were included in the study. CD26+/CD3+ was determined by FACS, sCD26 concentration was determined by ELISA, and DPP activity was determined by spectrophotometry. For KTR, these parameters were studied on the day before transplantation (preTx) and 7±1days after transplantation (postTx). RESULTS: There was no significant difference in the CD26+/CD3+, sCD26, and DPPIV data regarding gender, donor type (16 living donors), delayed graft function (n=8), or presence of ≥4HLA mismatches (n=16). Compared to the HP data, preTx CD26+/CD3+ was 4.5-fold higher, sCD26 was 1.2-fold higher, and DPPIV showed no significant difference. PostTx, CD26+/CD3+ was 3.8-fold higher, and sCD26 and DPPIV decreased significantly, reaching lower values than that observed in HP. Re-transplanted patients (n=5) showed significantly lower preTx CD26+/CD3+ expression than patients receiving their first transplant. Patients with preemptive transplantation (n=7) showed higher postTx CD26+/CD3+ expression than patients on dialysis. CONCLUSIONS: CD26 expression on CD3+ cells was strongly increased in patients with end stage kidney disease compared to HP and remained high early postTx. The differences in sCD26 and DPPIV behavior compared to that of CD26+/CD3+ postTx may reflect a regulatory response to the new immunological situation and the effects of therapy.


Assuntos
Dipeptidil Peptidase 4/sangue , Falência Renal Crônica/enzimologia , Transplante de Rim , Linfócitos T/enzimologia , Idoso , Biomarcadores/metabolismo , Complexo CD3/sangue , Complexo CD3/genética , Estudos de Casos e Controles , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Ensaios Enzimáticos , Feminino , Expressão Gênica , Humanos , Falência Renal Crônica/patologia , Falência Renal Crônica/cirurgia , Masculino , Pessoa de Meia-Idade , Linfócitos T/patologia , Adulto Jovem
16.
RSC Adv ; 3(32): 13293-13303, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33791090

RESUMO

Due to their ability to confer key functions of the native extracellular matrix (ECM) poly(ethylene glycol) (PEG)-based and PEG-modified materials have been extensively used as biocompatible and biofunctionalized substrate systems to study the influence of environmental parameters on cell adhesion in vitro. Given wide-ranging recent evidence that ECM compliance influences a variety of cell functions, the detailed determination and characterization of the specific PEG surface characteristics including topography, stiffness and chemistry is required. Here, we studied two frequently used bio-active interfaces - PEG-based and PEG-modified surfaces - to elucidate the differences between the physical surface properties, which cells can sense and respond to. For this purpose, two sets of surfaces were synthesized: the first set consisted of nanopatterned glass surfaces containing cRGD-functionalized gold nanoparticles surrounded by a passivated PEG-silane layer and the second set consisted of PEG-diacrylate (PEG-DA) hydrogels decorated with cRGD-functionalized gold nanoparticlesAlthough the two sets of nanostructured materials compared here were highly similar in terms of density and geometrical distribution of the presented bio-ligands as well as in terms of mechanical bulk properties, the topography and mechanical properties of the surfaces were found to be substantially different and are described in detail. In comparison to very stiff and ultrasmooth surface properties of the PEG-passivated glasses, the mechanical properties of PEG-DA surfaces in the biologically relevant stiffness range, together with the increased surface roughness at micro- and nanoscale levels have the potential to affect cell behavior. This potential was verified by studying the adhesive behavior of hematopoietic KG-1a and rat embryonic fibroblast (REF52) cells on both surfaces.

17.
Biomaterials ; 33(11): 3107-18, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22269650

RESUMO

Hematopoietic stem cells (HSCs) are the vital, life-long source of all blood cell types. They are found in stem cell niches, specific anatomic locations that offer all the factors and signals necessary for the maintenance of the stem cell potential of HSCs. Much attention has been paid to the biochemical composition of the niches, but only little is known about the influence of physical parameters, such as ligand nanopatterns, on HSCs. To investigate the impact of nanometer-scale spacing between cell ligands on HSC adhesion, integrin distribution and signal transduction, we employed geometrically defined, nanostructured, bio-functionalized surfaces. HSCs proved to be sensitive to the lateral distance between the presented ligands with regard to adhesion and lipid raft clustering, the latter being a prerequisite for the formation of signaling complexes. Furthermore, an extensive redistribution of stem cell markers, integrins and phosphorylated proteins in HSCs was observed. In conclusion, integrin-mediated adhesion and signaling of HSCs proved to depend on the nanostructured presentation of ligands in their environment. In this work, we show that the nanostructure of the matrix is an important parameter influencing HSC behavior that should be integrated into biomaterial-based approaches aiming at HSC multiplication or differentiation.


Assuntos
Fibronectinas/química , Fibronectinas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Integrinas/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Impressão Molecular/métodos , Adesão Celular/fisiologia , Linhagem Celular , Humanos , Ligantes , Nanoestruturas , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA