Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 115(11): 2033-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25042887

RESUMO

Cabozantinib, an inhibitor of vascular endothelial growth factor and hepatocyte growth factor signaling, decreases bone lesions in patients with prostate cancer. To determine direct effects of cabozantinib on bone, resorption in neonatal mouse bone organ culture and on gene expression, proliferation, and phenotypic markers in osteoblast and osteoclast cell lines were examined. Cabozantinib, 0.3 and 3 µM, prevented PTHrP-stimulated calcium release from neonatal mouse calvaria. Since the effect on resorption could reflect effects on osteoblasts to prevent osteoclast activation, or direct inhibition of osteoclasts, responses in osteoblastic and osteoclast precursor cell lines were examined. Twenty-four-hour treatment of osteoblastic MC3T3-E1 cells with 3 µM cabozantinib decreased expression of receptor activator of NFkB ligand (RANKL) and alkaline phosphatase. Forty-eight-hour treatment of MC3T3-E1 cells with 3 µM cabozantinib inhibited cell proliferation and decreased MTT activity. Effects on alkaline phosphatase activity were biphasic, with small stimulatory effects at concentrations below 3 µM. When RAW 264.7 osteoclast precursor cells differentiated with 20 ng/ml RANKL were co-treated for 24 h with 3 µM cabozantinib, expression of RANK, TRAP, cathepsin K, alpha v or beta 3 integrin, or NFATc1 were unaffected. Five-day treatment of RANKL-treated RAW 264.7 cells with 3 µM cabozantinib decreased TRAP and MTT activity. The results suggest that the osteoblast could be the initial target, with subsequent direct and indirect effects on osteoclastogenesis leading to decreased resorption. The multiple effects of cabozantinib on the cell microenvironment of bone are consistent with its effectiveness in reducing lesions from prostate cancer metastases.


Assuntos
Anilidas/farmacologia , Reabsorção Óssea/tratamento farmacológico , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/efeitos adversos , Piridinas/farmacologia , Ligante RANK/metabolismo , Células 3T3 , Animais , Reabsorção Óssea/induzido quimicamente , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos
3.
J Bone Miner Res ; 20(2): 341-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15647828

RESUMO

UNLABELLED: Embryonic mouse tooth germs were cultured in vitro in the presence of two related amelogenin isoforms to determine their effects on tooth development. Our results show that these individual proteins have specific but quite different effects on epithelial-derived ameloblasts versus mesenchymal-derived odontoblasts. INTRODUCTION: Amelogenins, the main protein components of enamel matrix, have been shown to have signaling activity. Amelogenin isoforms differing only by the presence or exclusion of exon 4, designated [A+4] (composed of exons 2, 3, 4, 5, 6d, and 7) and [A-4] (composed of exons 2, 3, 5, 6d, and 7), showed similar, but different, effects both in vitro and in vivo on postnatal teeth. MATERIALS AND METHODS: Lower first molar tooth germs of E15/16 CD1 mice were microdissected and cultured in vitro in a semisolid media containing either 20% FBS, 2% FBS, or 2% FBS with either 1.5 nM [A+4], [A-4], or both for 6 days. Tooth germs were analyzed by H&E staining and immunohistochemistry for collagen I, dentin matrix protein 2, and DAPI nuclear staining. RESULTS: Teeth cultured in media containing 20% FBS showed normal development with polarized ameloblasts, and odontoblasts producing dentin matrix, and DMP2 expression in odontoblasts and pre-ameloblasts. Culture in 2% FBS media resulted in no ameloblast polarization and modest odontoblast differentiation with scant dentin matrix. Tooth germs cultured with [A+4] in 2% FBS media had well-polarized odontoblasts with robust dentin production and concomitant ameloblast polarization. DMP2 expression was equal to or greater than seen in the 20% FBS culture condition. In cultures with [A-4] in 2% FBS media, odontoblast polarization and dentin production was reduced compared with [A+4]. However, the pre-ameloblast layer was disorganized, with no ameloblast polarization occurring along the dentin surface. DMP2 expression was reduced in the odontoblasts compared with the 20% FBS and [A+4] conditions and was almost completely abrogated in the pre-ameloblasts. CONCLUSION: These data show different signaling activities of these closely related amelogenin isoforms on tooth development. Here we make the novel observation that [A-4] has an inhibitory effect on ameloblast development, whereas [A+4] strongly stimulates odontoblast development. We show for the first time that specific amelogenin isoforms have effects on embryonic tooth development in vitro and also hypothesize that DMP2 may play a role in the terminal differentiation of both ameloblasts and odontoblasts.


Assuntos
Proteínas do Esmalte Dentário/química , Peptídeos/química , Germe de Dente/citologia , Dente/embriologia , Amelogenina , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Colágeno/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Células Epiteliais/metabolismo , Éxons , Proteínas da Matriz Extracelular , Imuno-Histoquímica , Mandíbula/embriologia , Camundongos , Técnicas de Cultura de Órgãos , Fosfoproteínas/biossíntese , Fosfoproteínas/metabolismo , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Transdução de Sinais , Fatores de Tempo , Germe de Dente/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA