Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Cancer ; 4(2): 257-275, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585452

RESUMO

Inhibiting individual histone deacetylase (HDAC) is emerging as well-tolerated anticancer strategy compared with pan-HDAC inhibitors. Through preclinical studies, we demonstrated that the sensitivity to the leading HDAC6 inhibitor (HDAC6i) ricolinstat can be predicted by a computational network-based algorithm (HDAC6 score). Analysis of ~3,000 human breast cancers (BCs) showed that ~30% of them could benefice from HDAC6i therapy. Thus, we designed a phase 1b dose-escalation clinical trial to evaluate the activity of ricolinostat plus nab-paclitaxel in patients with metastatic BC (MBC) (NCT02632071). Study results showed that the two agents can be safely combined, that clinical activity is identified in patients with HR+/HER2- disease and that the HDAC6 score has potential as predictive biomarker. Analysis of other tumor types also identified multiple cohorts with predicted sensitivity to HDAC6i's. Mechanistically, we have linked the anticancer activity of HDAC6i's to their ability to induce c-Myc hyperacetylation (ac-K148) promoting its proteasome-mediated degradation in sensitive cancer cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Desacetilase 6 de Histona/metabolismo , Neoplasias da Mama/tratamento farmacológico , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico
2.
Cancer Discov ; 13(2): 386-409, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36374194

RESUMO

Prioritizing treatments for individual patients with cancer remains challenging, and performing coclinical studies using patient-derived models in real time is often unfeasible. To circumvent these challenges, we introduce OncoLoop, a precision medicine framework that predicts drug sensitivity in human tumors and their preexisting high-fidelity (cognate) model(s) by leveraging drug perturbation profiles. As a proof of concept, we applied OncoLoop to prostate cancer using genetically engineered mouse models (GEMM) that recapitulate a broad spectrum of disease states, including castration-resistant, metastatic, and neuroendocrine prostate cancer. Interrogation of human prostate cancer cohorts by Master Regulator (MR) conservation analysis revealed that most patients with advanced prostate cancer were represented by at least one cognate GEMM-derived tumor (GEMM-DT). Drugs predicted to invert MR activity in patients and their cognate GEMM-DTs were successfully validated in allograft, syngeneic, and patient-derived xenograft (PDX) models of tumors and metastasis. Furthermore, OncoLoop-predicted drugs enhanced the efficacy of clinically relevant drugs, namely, the PD-1 inhibitor nivolumab and the AR inhibitor enzalutamide. SIGNIFICANCE: OncoLoop is a transcriptomic-based experimental and computational framework that can support rapid-turnaround coclinical studies to identify and validate drugs for individual patients, which can then be readily adapted to clinical practice. This framework should be applicable in many cancer contexts for which appropriate models and drug perturbation data are available. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Camundongos , Animais , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Medicina de Precisão , Antagonistas de Receptores de Andrógenos , Transcriptoma , Perfilação da Expressão Gênica , Nitrilas , Receptores Androgênicos/genética
3.
Curr Protoc ; 2(9): e544, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36083100

RESUMO

The current Achilles heel of cancer drug discovery is the inability to forge precise and predictive connections among mechanistic drivers of the cancer cell state, therapeutically significant molecular targets, effective drugs, and responsive patient subgroups. Although advances in molecular biology have helped identify molecular markers and stratify patients into molecular subtypes, these associational strategies typically fail to provide a mechanistic rationale to identify cancer vulnerabilities. Recently, integrative systems biology methodologies have been used to reverse engineer cellular networks and identify master regulators (MRs), proteins whose activity is both necessary and sufficient to implement phenotypic states under physiological and pathological conditions, which are organized into highly interconnected regulatory modules called tumor checkpoints. Because of their functional relevance, MRs represent ideal pharmacological targets and biomarkers. Here, we present a six-step patient-to-model-to-patient protocol that employs computational and experimental methodologies to reconstruct and interrogate the regulatory logic of human cancer cells for identifying and therapeutically targeting the tumor checkpoint with novel as well as existing pharmacological agents. This protocol systematically identifies, from specific patient tumor samples, the MRs that comprise the tumor checkpoint. Then, it identifies in vitro and in vivo models that, by recapitulating the patient's tumor checkpoint, constitute the appropriate cell lines and xenografts to further elucidate the tissue context-specific drug mechanism of action (MOA) and permit precise, biomarker-based preclinical validations of drug efficacy. The combination of determination of a drug's context-specific MOA and precise identification of patients' tumor checkpoints provides a personalized, mechanism-based biomarker to enrich prospective clinical trials with patients likely to respond. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Biomarcadores , Descoberta de Drogas , Humanos , Neoplasias/tratamento farmacológico , Estudos Prospectivos
4.
Clin Cancer Res ; 28(3): 452-460, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728525

RESUMO

PURPOSE: Selinexor is an oral selective inhibitor of exportin-1 (XPO1) with efficacy in various solid and hematologic tumors. We assessed intratumoral penetration, safety, and efficacy of selinexor monotherapy for recurrent glioblastoma. PATIENTS AND METHODS: Seventy-six adults with Karnofsky Performance Status ≥ 60 were enrolled. Patients undergoing cytoreductive surgery received up to three selinexor doses (twice weekly) preoperatively (Arm A; n = 8 patients). Patients not undergoing surgery received 50 mg/m2 (Arm B, n = 24), or 60 mg (Arm C, n = 14) twice weekly, or 80 mg once weekly (Arm D; n = 30). Primary endpoint was 6-month progression-free survival rate (PFS6). RESULTS: Median selinexor concentrations in resected tumors from patients receiving presurgical selinexor was 105.4 nmol/L (range 39.7-291 nmol/L). In Arms B, C, and D, respectively, the PFS6 was 10% [95% confidence interval (CI), 2.79-35.9], 7.7% (95% CI, 1.17-50.6), and 17% (95% CI, 7.78-38.3). Measurable reduction in tumor size was observed in 19 (28%) and RANO-response rate overall was 8.8% [Arm B, 8.3% (95% CI, 1.0-27.0); C: 7.7% (95% CI, 0.2-36.0); D: 10% (95% CI, 2.1-26.5)], with one complete and two durable partial responses in Arm D. Serious adverse events (AEs) occurred in 26 (34%) patients; 1 (1.3%) was fatal. The most common treatment-related AEs were fatigue (61%), nausea (59%), decreased appetite (43%), and thrombocytopenia (43%), and were manageable by supportive care and dose modification. Molecular studies identified a signature predictive of response (AUC = 0.88). CONCLUSIONS: At 80 mg weekly, single-agent selinexor induced responses and clinically relevant PFS6 with manageable side effects requiring dose reductions. Ongoing trials are evaluating safety and efficacy of selinexor in combination with other therapies for newly diagnosed or recurrent glioblastoma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Hidrazinas/administração & dosagem , Recidiva Local de Neoplasia/tratamento farmacológico , Triazóis/administração & dosagem , Administração Oral , Adulto , Idoso , Encéfalo/metabolismo , Neoplasias Encefálicas/cirurgia , Procedimentos Cirúrgicos de Citorredução , Feminino , Glioblastoma/cirurgia , Humanos , Hidrazinas/efeitos adversos , Hidrazinas/metabolismo , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Triazóis/efeitos adversos , Triazóis/metabolismo , Adulto Jovem
6.
Leuk Lymphoma ; 62(13): 3192-3203, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34323164

RESUMO

Selinexor, a selective inhibitor of nuclear export, has demonstrated promising activity in patients with acute myeloid leukemia (AML). This randomized, phase II study evaluated selinexor 60 mg twice weekly (n = 118) vs. physician's choice (PC) treatment (n = 57) in patients aged ≥60 years with relapsed/refractory (R/R) AML. The primary outcome was overall survival (OS). Median OS did not differ significantly for selinexor vs. PC (3.2 vs. 5.6 months; HR = 1.18 [95% CI: 0.79-1.75]; p = 0.422). Complete remission (CR) plus CR with incomplete hematologic recovery trending in favor of selinexor occurred in a minority of patients. Selinexor treated patients had an increased incidence of adverse events. The most common grade ≥3 adverse events were thrombocytopenia, febrile neutropenia, anemia, hyponatremia. Despite well-balanced baseline characteristics, there were numerically higher rates of TP53 mutations, prior myelodysplastic syndrome, and lower absolute neutrophil counts in the selinexor group; warranting further investigation of selinexor in more carefully stratified R/R AML patients.Registered trial: NCT02088541.


Assuntos
Leucemia Mieloide Aguda , Médicos , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Humanos , Hidrazinas/efeitos adversos , Triazóis/efeitos adversos
7.
Cell ; 184(2): 334-351.e20, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33434495

RESUMO

Despite considerable efforts, the mechanisms linking genomic alterations to the transcriptional identity of cancer cells remain elusive. Integrative genomic analysis, using a network-based approach, identified 407 master regulator (MR) proteins responsible for canalizing the genetics of individual samples from 20 cohorts in The Cancer Genome Atlas (TCGA) into 112 transcriptionally distinct tumor subtypes. MR proteins could be further organized into 24 pan-cancer, master regulator block modules (MRBs), each regulating key cancer hallmarks and predictive of patient outcome in multiple cohorts. Of all somatic alterations detected in each individual sample, >50% were predicted to induce aberrant MR activity, yielding insight into mechanisms linking tumor genetics and transcriptional identity and establishing non-oncogene dependencies. Genetic and pharmacological validation assays confirmed the predicted effect of upstream mutations and MR activity on downstream cellular identity and phenotype. Thus, co-analysis of mutational and gene expression profiles identified elusive subtypes and provided testable hypothesis for mechanisms mediating the effect of genetic alterations.


Assuntos
Neoplasias/genética , Transcrição Gênica , Adenocarcinoma/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Células HEK293 , Humanos , Camundongos Nus , Mutação/genética , Reprodutibilidade dos Testes
8.
Nat Commun ; 11(1): 5579, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149111

RESUMO

Cell-to-cell communications are critical determinants of pathophysiological phenotypes, but methodologies for their systematic elucidation are lacking. Herein, we propose an approach for the Systematic Elucidation and Assessment of Regulatory Cell-to-cell Interaction Networks (SEARCHIN) to identify ligand-mediated interactions between distinct cellular compartments. To test this approach, we selected a model of amyotrophic lateral sclerosis (ALS), in which astrocytes expressing mutant superoxide dismutase-1 (mutSOD1) kill wild-type motor neurons (MNs) by an unknown mechanism. Our integrative analysis that combines proteomics and regulatory network analysis infers the interaction between astrocyte-released amyloid precursor protein (APP) and death receptor-6 (DR6) on MNs as the top predicted ligand-receptor pair. The inferred deleterious role of APP and DR6 is confirmed in vitro in models of ALS. Moreover, the DR6 knockdown in MNs of transgenic mutSOD1 mice attenuates the ALS-like phenotype. Our results support the usefulness of integrative, systems biology approach to gain insights into complex neurobiological disease processes as in ALS and posit that the proposed methodology is not restricted to this biological context and could be used in a variety of other non-cell-autonomous communication mechanisms.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Comunicação Celular/fisiologia , Morte Celular/fisiologia , Neurônios Motores/metabolismo , Superóxido Dismutase-1/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Animais , Células Cultivadas , Biologia Computacional , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Ligantes , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Proteômica , RNA Interferente Pequeno , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Superóxido Dismutase-1/genética
9.
bioRxiv ; 2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32511361

RESUMO

Most antiviral agents are designed to target virus-specific proteins and mechanisms rather than the host cell proteins that are critically dysregulated following virus-mediated reprogramming of the host cell transcriptional state. To overcome these limitations, we propose that elucidation and pharmacologic targeting of host cell Master Regulator proteins-whose aberrant activities govern the reprogramed state of coronavirus-infected cells-presents unique opportunities to develop novel mechanism-based therapeutic approaches to antiviral therapy, either as monotherapy or as a complement to established treatments. Specifically, we propose that a small module of host cell Master Regulator proteins (ViroCheckpoint) is hijacked by the virus to support its efficient replication and release. Conventional methodologies are not well suited to elucidate these potentially targetable proteins. By using the VIPER network-based algorithm, we successfully interrogated 12h, 24h, and 48h signatures from Calu-3 lung adenocarcinoma cells infected with SARS-CoV, to elucidate the time-dependent reprogramming of host cells and associated Master Regulator proteins. We used the NYS CLIA-certified Darwin OncoTreat algorithm, with an existing database of RNASeq profiles following cell perturbation with 133 FDA-approved and 195 late-stage experimental compounds, to identify drugs capable of virtually abrogating the virus-induced Master Regulator signature. This approach to drug prioritization and repurposing can be trivially extended to other viral pathogens, including SARS-CoV-2, as soon as the relevant infection signature becomes available.

11.
Sci Transl Med ; 11(488)2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996079

RESUMO

Eradicating triple-negative breast cancer (TNBC) resistant to neoadjuvant chemotherapy (NACT) is a critical unmet clinical need. In this study, patient-derived xenograft (PDX) models of treatment-naïve TNBC and serial biopsies from TNBC patients undergoing NACT were used to elucidate mechanisms of chemoresistance in the neoadjuvant setting. Barcode-mediated clonal tracking and genomic sequencing of PDX tumors revealed that residual tumors remaining after treatment with standard frontline chemotherapies, doxorubicin (Adriamycin) combined with cyclophosphamide (AC), maintained the subclonal architecture of untreated tumors, yet their transcriptomes, proteomes, and histologic features were distinct from those of untreated tumors. Once treatment was halted, residual tumors gave rise to AC-sensitive tumors with similar transcriptomes, proteomes, and histological features to those of untreated tumors. Together, these results demonstrated that tumors can adopt a reversible drug-tolerant state that does not involve clonal selection as an AC resistance mechanism. Serial biopsies obtained from patients with TNBC undergoing NACT revealed similar histologic changes and maintenance of stable subclonal architecture, demonstrating that AC-treated PDXs capture molecular features characteristic of human TNBC chemoresistance. Last, pharmacologic inhibition of oxidative phosphorylation using an inhibitor currently in phase 1 clinical development delayed residual tumor regrowth. Thus, AC resistance in treatment-naïve TNBC can be mediated by nonselective mechanisms that confer a reversible chemotherapy-tolerant state with targetable vulnerabilities.


Assuntos
Doxorrubicina/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Ciclofosfamida/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Camundongos SCID , Terapia Neoadjuvante , Transcriptoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nat Commun ; 9(1): 3815, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232459

RESUMO

Intratumoral heterogeneity in cancers arises from genomic instability and epigenomic plasticity and is associated with resistance to cytotoxic and targeted therapies. We show here that cell-state heterogeneity, defined by differentiation-state marker expression, is high in triple-negative and basal-like breast cancer subtypes, and that drug tolerant persister (DTP) cell populations with altered marker expression emerge during treatment with a wide range of pathway-targeted therapeutic compounds. We show that MEK and PI3K/mTOR inhibitor-driven DTP states arise through distinct cell-state transitions rather than by Darwinian selection of preexisting subpopulations, and that these transitions involve dynamic remodeling of open chromatin architecture. Increased activity of many chromatin modifier enzymes, including BRD4, is observed in DTP cells. Co-treatment with the PI3K/mTOR inhibitor BEZ235 and the BET inhibitor JQ1 prevents changes to the open chromatin architecture, inhibits the acquisition of a DTP state, and results in robust cell death in vitro and xenograft regression in vivo.


Assuntos
Neoplasias da Mama/patologia , Diferenciação Celular , Plasticidade Celular , Resistencia a Medicamentos Antineoplásicos , Animais , Antineoplásicos/uso terapêutico , Azepinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Cromatina/metabolismo , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/patologia
13.
Nat Genet ; 50(7): 979-989, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915428

RESUMO

We introduce and validate a new precision oncology framework for the systematic prioritization of drugs targeting mechanistic tumor dependencies in individual patients. Compounds are prioritized on the basis of their ability to invert the concerted activity of master regulator proteins that mechanistically regulate tumor cell state, as assessed from systematic drug perturbation assays. We validated the approach on a cohort of 212 gastroenteropancreatic neuroendocrine tumors (GEP-NETs), a rare malignancy originating in the pancreas and gastrointestinal tract. The analysis identified several master regulator proteins, including key regulators of neuroendocrine lineage progenitor state and immunoevasion, whose role as critical tumor dependencies was experimentally confirmed. Transcriptome analysis of GEP-NET-derived cells, perturbed with a library of 107 compounds, identified the HDAC class I inhibitor entinostat as a potent inhibitor of master regulator activity for 42% of metastatic GEP-NET patients, abrogating tumor growth in vivo. This approach may thus complement current efforts in precision oncology.


Assuntos
Antineoplásicos/farmacologia , Tumores Neuroendócrinos/tratamento farmacológico , Benzamidas/farmacologia , Linhagem Celular Tumoral , Estudos de Coortes , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Neoplasias Intestinais/tratamento farmacológico , Neoplasias Intestinais/genética , Tumores Neuroendócrinos/genética , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Medicina de Precisão/métodos , Piridinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
14.
Nat Commun ; 9(1): 1471, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662057

RESUMO

We and others have shown that transition and maintenance of biological states is controlled by master regulator proteins, which can be inferred by interrogating tissue-specific regulatory models (interactomes) with transcriptional signatures, using the VIPER algorithm. Yet, some tissues may lack molecular profiles necessary for interactome inference (orphan tissues), or, as for single cells isolated from heterogeneous samples, their tissue context may be undetermined. To address this problem, we introduce metaVIPER, an algorithm designed to assess protein activity in tissue-independent fashion by integrative analysis of multiple, non-tissue-matched interactomes. This assumes that transcriptional targets of each protein will be recapitulated by one or more available interactomes. We confirm the algorithm's value in assessing protein dysregulation induced by somatic mutations, as well as in assessing protein activity in orphan tissues and, most critically, in single cells, thus allowing transformation of noisy and potentially biased RNA-Seq signatures into reproducible protein-activity signatures.


Assuntos
Algoritmos , Neoplasias Encefálicas/genética , Linhagem da Célula/genética , Redes Reguladoras de Genes , Glioblastoma/genética , Fatores de Transcrição/genética , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem da Célula/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Especificidade de Órgãos , Mapeamento de Interação de Proteínas , Análise de Célula Única/métodos , Fatores de Transcrição/imunologia
15.
Cancer Discov ; 8(5): 582-599, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510988

RESUMO

High-risk neuroblastomas show a paucity of recurrent somatic mutations at diagnosis. As a result, the molecular basis for this aggressive phenotype remains elusive. Recent progress in regulatory network analysis helped us elucidate disease-driving mechanisms downstream of genomic alterations, including recurrent chromosomal alterations. Our analysis identified three molecular subtypes of high-risk neuroblastomas, consistent with chromosomal alterations, and identified subtype-specific master regulator proteins that were conserved across independent cohorts. A 10-protein transcriptional module-centered around a TEAD4-MYCN positive feedback loop-emerged as the regulatory driver of the high-risk subtype associated with MYCN amplification. Silencing of either gene collapsed MYCN-amplified (MYCNAmp) neuroblastoma transcriptional hallmarks and abrogated viability in vitro and in vivo Consistently, TEAD4 emerged as a robust prognostic marker of poor survival, with activity independent of the canonical Hippo pathway transcriptional coactivators YAP and TAZ. These results suggest novel therapeutic strategies for the large subset of MYCN-deregulated neuroblastomas.Significance: Despite progress in understanding of neuroblastoma genetics, little progress has been made toward personalized treatment. Here, we present a framework to determine the downstream effectors of the genetic alterations sustaining neuroblastoma subtypes, which can be easily extended to other tumor types. We show the critical effect of disrupting a 10-protein module centered around a YAP/TAZ-independent TEAD4-MYCN positive feedback loop in MYCNAmp neuroblastomas, nominating TEAD4 as a novel candidate for therapeutic intervention. Cancer Discov; 8(5); 582-99. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 517.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Musculares/genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Aciltransferases , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Biologia Computacional/métodos , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Humanos , Proteínas Musculares/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Estadiamento de Neoplasias , Neuroblastoma/diagnóstico , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo , Ativação Transcricional
16.
PLoS Comput Biol ; 13(10): e1005599, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29023443

RESUMO

A large fraction of the proteins that are being identified as key tumor dependencies represent poor pharmacological targets or lack clinically-relevant small-molecule inhibitors. Availability of fully generalizable approaches for the systematic and efficient prioritization of tumor-context specific protein activity inhibitors would thus have significant translational value. Unfortunately, inhibitor effects on protein activity cannot be directly measured in systematic and proteome-wide fashion by conventional biochemical assays. We introduce OncoLead, a novel network based approach for the systematic prioritization of candidate inhibitors for arbitrary targets of therapeutic interest. In vitro and in vivo validation confirmed that OncoLead analysis can recapitulate known inhibitors as well as prioritize novel, context-specific inhibitors of difficult targets, such as MYC and STAT3. We used OncoLead to generate the first unbiased drug/regulator interaction map, representing compounds modulating the activity of cancer-relevant transcription factors, with potential in precision medicine.


Assuntos
Antineoplásicos , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Humanos , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT3/metabolismo
17.
Cell Rep ; 20(7): 1623-1640, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813674

RESUMO

At the root of most fatal malignancies are aberrantly activated transcriptional networks that drive metastatic dissemination. Although individual metastasis-associated genes have been described, the complex regulatory networks presiding over the initiation and maintenance of metastatic tumors are still poorly understood. There is untapped value in identifying therapeutic targets that broadly govern coordinated transcriptional modules dictating metastatic progression. Here, we reverse engineered and interrogated a breast cancer-specific transcriptional interaction network (interactome) to define transcriptional control structures causally responsible for regulating genetic programs underlying breast cancer metastasis in individual patients. Our analyses confirmed established pro-metastatic transcription factors, and they uncovered TRIM25 as a key regulator of metastasis-related transcriptional programs. Further, in vivo analyses established TRIM25 as a potent regulator of metastatic disease and poor survival outcome. Our findings suggest that identifying and targeting keystone proteins, like TRIM25, can effectively collapse transcriptional hierarchies necessary for metastasis formation, thus representing an innovative cancer intervention strategy.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Feminino , Redes Reguladoras de Genes , Genes Reporter , Xenoenxertos , Humanos , Luciferases/genética , Luciferases/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Análise de Sobrevida , Biologia de Sistemas , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
Nat Commun ; 8(1): 105, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740083

RESUMO

Pharmacological and functional genomic screens play an essential role in the discovery and characterization of therapeutic targets and associated pharmacological inhibitors. Although these screens affect thousands of gene products, the typical readout is based on low complexity rather than genome-wide assays. To address this limitation, we introduce pooled library amplification for transcriptome expression (PLATE-Seq), a low-cost, genome-wide mRNA profiling methodology specifically designed to complement high-throughput screening assays. Introduction of sample-specific barcodes during reverse transcription supports pooled library construction and low-depth sequencing that is 10- to 20-fold less expensive than conventional RNA-Seq. The use of network-based algorithms to infer protein activity from PLATE-Seq data results in comparable reproducibility to 30 M read sequencing. Indeed, PLATE-Seq reproducibility compares favorably to other large-scale perturbational profiling studies such as the connectivity map and library of integrated network-based cellular signatures.Despite the importance of pharmacological and functional genomic screens the readouts are of low complexity. Here the authors introduce PLATE-Seq, a low-cost genome-wide mRNA profiling method to complement high-throughput screening.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma/genética , Genômica/métodos , Humanos , Reprodutibilidade dos Testes
19.
Nat Rev Cancer ; 17(2): 116-130, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27977008

RESUMO

Recent studies across multiple tumour types are starting to reveal a recurrent regulatory architecture in which genomic alterations cluster upstream of functional master regulator (MR) proteins, the aberrant activity of which is both necessary and sufficient to maintain tumour cell state. These proteins form small, hyperconnected and autoregulated modules (termed tumour checkpoints) that are increasingly emerging as optimal biomarkers and therapeutic targets. Crucially, as their activity is mostly dysregulated in a post-translational manner, rather than by mutations in their corresponding genes or by differential expression, the identification of MR proteins by conventional methods is challenging. In this Opinion article, we discuss novel methods for the systematic analysis of MR proteins and of the modular regulatory architecture they implement, including their use as a valuable reductionist framework to study the genetic heterogeneity of human disease and to drive key translational applications.


Assuntos
Neoplasias/etiologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , Transformação Celular Neoplásica , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Glucocorticoides/farmacologia , Homeostase , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes , Biologia de Sistemas
20.
Genome Med ; 8(1): 116, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27799065

RESUMO

BACKGROUND: Precision medicine approaches are ideally suited for rare tumors where comprehensive characterization may have diagnostic, prognostic, and therapeutic value. We describe the clinical case and molecular characterization of an adolescent with metastatic poorly differentiated carcinoma (PDC). Given the rarity and poor prognosis associated with PDC in children, we utilized genomic analysis and preclinical models to validate oncogenic drivers and identify molecular vulnerabilities. METHODS: We utilized whole exome sequencing (WES) and transcriptome analysis to identify germline and somatic alterations in the patient's tumor. In silico and in vitro studies were used to determine the functional consequences of genomic alterations. Primary tumor was used to generate a patient-derived xenograft (PDX) model, which was used for in vivo assessment of predicted therapeutic options. RESULTS: WES revealed a novel germline frameshift variant (p.E1554fs) in APC, establishing a diagnosis of Gardner syndrome, along with a somatic nonsense (p.R790*) APC mutation in the tumor. Somatic mutations in TP53, MAX, BRAF, ROS1, and RPTOR were also identified and transcriptome and immunohistochemical analyses suggested hyperactivation of the Wnt/ß-catenin and AKT/mTOR pathways. In silico and biochemical assays demonstrated that the MAX p.R60Q and BRAF p.K483E mutations were activating mutations, whereas the ROS1 and RPTOR mutations were of lower utility for therapeutic targeting. Utilizing a patient-specific PDX model, we demonstrated in vivo activity of mTOR inhibition with temsirolimus and partial response to inhibition of MEK. CONCLUSIONS: This clinical case illustrates the depth of investigation necessary to fully characterize the functional significance of the breadth of alterations identified through genomic analysis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma/tratamento farmacológico , Carcinoma/genética , Genômica/métodos , Doenças Raras/tratamento farmacológico , Doenças Raras/genética , Adolescente , Animais , Carboplatina/efeitos adversos , Carcinoma/diagnóstico por imagem , Análise Mutacional de DNA , Etoposídeo/efeitos adversos , Evolução Fatal , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Paclitaxel/efeitos adversos , Doenças Raras/diagnóstico por imagem , Couro Cabeludo/efeitos dos fármacos , Couro Cabeludo/metabolismo , Couro Cabeludo/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA