Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2322, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149705

RESUMO

Acute lymphocytic leukemia is the most common type of cancer in pediatric individuals. Glucose regulated protein (GRP78) is an endoplasmic reticulum chaperone that facilitates the folding and assembly of proteins and regulates the unfolded protein response pathway. GRP78 has a role in survival of cancer and metastasis and cell-surface associated GRP78 (sGRP78) is expressed on cancer cells but not in normal cells. Here, we explored the presence of sGRP78 in pediatric B-ALL at diagnosis and investigated the correlation with bona fide markers of leukemia. By using a combination of flow cytometry and high multidimensional analysis, we found a distinctive cluster containing high levels of sGRP78, CD10, CD19, and CXCR4 in bone marrow samples obtained from High-risk leukemia patients, which was absent in the compartment of Standard-risk leukemia. We confirmed that sGRP78+CXCR4+ blood-derived cells were more frequent in High-risk leukemia patients. Finally, we analyzed the dissemination capacity of sGRP78 leukemia cells in a model of xenotransplantation. sGRP78+ cells emigrated to the bone marrow and lymph nodes, maintaining the expression of CXCR4. Testing the presence of sGRP78 and CXCR4 together with conventional markers may help to achieve a better categorization of High and Standard-risk pediatric leukemia at diagnosis.


Assuntos
Chaperona BiP do Retículo Endoplasmático/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores CXCR4/metabolismo , Adolescente , Animais , Antígenos CD/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Células Neoplásicas Circulantes/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Fatores de Risco
2.
Cell Signal ; 92: 110246, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35033667

RESUMO

Medulloblastoma (MB) is the most common and aggressive pediatric intracranial tumor. Estrogen receptor ß (ERß) expression correlates with MB development and its phosphorylation modifies its transcriptional activity in a ligand-dependent or independent manner. Using in silico tools, we have identified several residues in ERß protein as potential targets of protein kinases C (PKCs) α and δ. Using Daoy cells, we observed that PKCα and PKCδ associate with ERß and induce its phosphorylation. The activation of ERß promotes MB cells proliferation and invasion, and PKCs downregulation dysregulates these steroid receptor mediated processes. Our data suggest that these kinases may play a crucial role in the regulation of the ERß transcriptional activity. Overexpression of both PKCα and PKCδ in MB biopsies samples supports their relevance in MB progression.


Assuntos
Neoplasias Cerebelares , Receptor beta de Estrogênio , Meduloblastoma , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C , Linhagem Celular Tumoral , Proliferação de Células , Criança , Receptor alfa de Estrogênio , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo
3.
Childs Nerv Syst ; 37(12): 3743-3752, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480601

RESUMO

PURPOSE: Medulloblastoma is an embryonal brain tumor that predominantly occurs in childhood with a wide histological and molecular variability. Our aim was to investigate the expression of Toll-like receptors (TLRs), their association with the infiltration of immune cells and with the histological subgroups, and, also, with the overall survival of patients. METHODS: Fifty-six paraffin-preserved biopsies from children with medulloblastoma of the classic, desmoplastic, and anaplastic subtypes were included. Microarrays of tissues were performed, and the infiltration of T and NK cells was quantified, as well as the expression of TLR7, TLR8, and TLR9. For all statistical analyses, significance was p < 0.05. RESULTS: CD4 + and CD8 + T lymphocytes and NK cells were found infiltrating the tumor. The infiltration of NK and CD4 + cells was greater in the classic and desmoplastic subtypes than in anaplastic. We found an important expression of TLRs in all medulloblastomas, but TLR7 and TLR8 were considerably higher in classic and desmoplastic subtypes than in anaplastic. Importantly, we observed that TLR7 was a prognostic factor for survival. CONCLUSIONS: Medulloblastomas present cellular infiltration and a differential expression of TLRs depending on the histological subtype. TLR7 is a prognostic factor of survival that is dependent on treatment and age.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Receptor 7 Toll-Like/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Cerebelares/diagnóstico , Criança , Humanos , Meduloblastoma/diagnóstico , Taxa de Sobrevida , Receptor 8 Toll-Like
4.
Molecules ; 25(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260783

RESUMO

Oxidative stress is a crucial event underlying several pediatric neurological diseases, such as the central nervous system (CNS) tumors, autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Neuroprotective therapy with natural compounds used as antioxidants has the potential to delay, ameliorate or prevent several pediatric neurological diseases. The present review provides an overview of the most recent research outcomes following quercetin treatment for CNS tumors, ASD and ADHD as well as describes the potential in vitro and in vivo ameliorative effect on oxidative stress of bioactive natural compounds, which seems like a promising future therapy for these diseases. The neuroprotective effects of quercetin against oxidative stress can also be applied in the management of several neurodegenerative disorders with effects such as anti-cancer, anti-inflammatory, anti-viral, anti-obesity and anti-microbial. Therefore, quercetin appears to be a suitable adjuvant for therapy against pediatric neurological diseases.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Quercetina/uso terapêutico , Criança , Humanos
5.
Med Oncol ; 37(1): 4, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31713081

RESUMO

Patients with advanced stage ovarian clear cell carcinoma (OCCC) have a poor prognosis due to resistance to conventional platinum chemotherapy. Recent studies have demonstrated that PI3K/AKT/mTOR and ERK1/2 signaling pathways are involved in this chemoresistance. Progranulin (PGRN) overexpression contributes to cisplatin resistance of epithelial ovarian cancer cell lines. Also, PGRN expression is regulated by AKT/mTOR and ERK1/2 signaling pathways in different cell types. Thus, the present study was designed to identify if PGRN expression is regulated by AKT, mTOR, and ERK1/2 signaling pathways in the OCCC cell line TOV-21G. Cultured TOV-21G cells were incubated with different concentrations of pharmacological cell signaling inhibitors. PGRN expression and phosphorylation of ERK1/2, AKT, and mTOR were assessed by Western blotting. Inhibition of AKT, mTOR, and ERK1/2 significantly reduced PGRN expression. Cell viability was not affected, while cell proliferation significantly decreased with all inhibitors used in this study. These observations demonstrated that inhibition of PI3K/AKT/mTOR and ERK1/2 signaling pathways reduces PGRN expression in TOV-21G cells. Thus, PGRN could be considered as a candidate for explaining the high resistance to platinum-based treatment and a potential biomarker for therapy response to cell signaling inhibitors in patients with OCCC.


Assuntos
Antineoplásicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Progranulinas , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Progranulinas/análise , Progranulinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Mol Cell Endocrinol ; 400: 129-39, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25448845

RESUMO

The hypothalamus regulates the homeostasis of the organism by controlling hormone secretion from the pituitary. The molecular mechanisms that regulate the differentiation of the hypothalamic thyrotropin-releasing hormone (TRH) phenotype are poorly understood. We have previously shown that Klf10 or TGFß inducible early gene-1 (TIEG1) is enriched in fetal hypothalamic TRH neurons. Here, we show that expression of TGFß isoforms (1-3) and both TGFß receptors (TßRI and II) occurs in the hypothalamus concomitantly with the establishment of TRH neurons during late embryonic development. TGFß2 induces Trh expression via a TIEG1 dependent mechanism. TIEG1 regulates Trh expression through an evolutionary conserved GC rich sequence on the Trh promoter. Finally, in mice deficient in TIEG1, Trh expression is lower than in wild type animals at embryonic day 17. These results indicate that TGFß signaling, through the upregulation of TIEG1, plays an important role in the establishment of Trh expression in the embryonic hypothalamus.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Neurônios/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta2/metabolismo , Animais , Proteínas de Ligação a DNA/deficiência , Embrião de Mamíferos , Feto , Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Cultura Primária de Células , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Wistar , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Hormônio Liberador de Tireotropina/genética , Fatores de Transcrição/deficiência , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/metabolismo
7.
World J Gastrointest Pathophysiol ; 5(4): 400-4, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25400983

RESUMO

The purpose of this paper is to review current information about the role of inflammation caused by Helicobacter pylori (H. pylori) infection in neurological diseases such as Parkinson's disease, Alzheimer's disease, Guillain-Barré syndrome, multiple sclerosis, and other inflammatory diseases including ischemic stroke. Infection with H. pylori usually persists throughout life, resulting in a chronic inflammatory response with local secretion of numerous inflammatory mediators including chemokines [interleukin (IL)-8, macrophage chemotactic protein (MCP)-1, growth-regulated oncogene (GRO)-α] and cytokines [IL-1ß, tumor necrosis factor (TNF)-α, IL-6, IL-12, interferon (IFN)-γ], which can pass into the circulation and have a systemic effect. The persistence of detectable systemic and local concentrations of inflammatory mediators is likely to alter the outcome of neurological diseases. These proinflammatory factors can induce brain inflammation and the death of neurons and could eventually be associated to Parkinson's disease and also may be involved in the development of Alzheimer's disease. However, most neurological diseases are the result of a combination of multiple factors, but the systemic inflammatory response is a common component and determinant in the onset, evolution, and outcome of diseases. However, more studies are needed to allow understanding of the effects and mechanisms by which the inflammatory response generated by H. pylori infection affects neurological diseases.

8.
PLoS One ; 8(6): e64623, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23755130

RESUMO

Helicobacter pylori contains a pathogenicity island, cagPAI, with genes homologous to components of the type IV secretion system (T4SS) of Agrobacterium tumefaciens. The T4SS components assemble a structure that transfers CagA protein and peptidoglycan into host epithelial cells, causing the increased release of interleukin 8 (IL8) from the cells. The Toll-like receptors on neutrophils recognize H. pylori, initiating signaling pathways that enhance the activation of NF-κB. However, the roles of cagPAI and T4SS in the inflammatory response of neutrophils are unknown. We evaluated the participation of cagPAI and T4SS in the response of human neutrophils to H. pylori infection. Neutrophils were isolated from the blood of healthy donors and infected with H. pylori cagPAI(+), cagPAI(-), and cagPAI mutant strains virB4 (-) and virD4 (-). Whereas cagPAI(+) strain 26695 induced the greatest IL8 production, a proinflammatory response, cagPAI(-) strain 8822 induced the greatest IL10 production, an anti-inflammatory response. In contrast, the virB4 (-) and virD4 (-) mutant strains produced significantly more of the two proinflammatory cytokines IL1ß and tumor necrosis factor αthan the cagPAI(+) strain 26695. We observed that H. pylori downregulated the expression of TLRs 2 and 5 but upregulated TLR9 expression in a cagPAI and T4SS-independent manner. These results show for the first time that the response of human neutrophils to H. pylori may vary from a pro-inflammatory to an anti-inflammatory response, depending on cagPAI and the integrity of T4SS.


Assuntos
Sistemas de Secreção Bacterianos/genética , Ilhas Genômicas/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Inflamação/imunologia , Inflamação/microbiologia , Neutrófilos/imunologia , Citocinas/metabolismo , Regulação para Baixo , Genótipo , Humanos , Mutação/genética , Receptores Toll-Like/metabolismo
9.
FEMS Immunol Med Microbiol ; 51(3): 473-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17892476

RESUMO

The innate immune response to Helicobacter pylori infection is beginning to be understood and recent works support a role for Toll-like receptors (TLRs). Our aim was to study the response of human neutrophils to H. pylori and to elucidate the role of TLR2 and TLR4. Neutrophils from healthy H. pylori-negative volunteers were cocultured with H. pylori 26695 strain. The release of IL-8, IL-1beta, tumor necrosis factor (TNF)-alpha and IL-10 was measured. The role of TLR2 and TLR4 was investigated with blocking assays using monoclonal antibodies against TLRs. Neutrophils produced a significant increase of IL-8, IL-1beta and TNF-alpha after 3, 6 and 24 h of H. pylori challenge, respectively, whereas IL-10 increased after 24 h. Helicobacter pylori challenge increased TLR2 and TLR4 expression; and antibodies against TLR2 and TLR4 diminished significantly the H. pylori-induced production of IL-8 and IL-10. In human neutrophils, H. pylori induces an early inflammatory response, partially mediated via TLR2 and TLR4 activation.


Assuntos
Helicobacter pylori/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Células Cultivadas , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA