Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Eur J Oncol Nurs ; 72: 102665, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39018959

RESUMO

PURPOSE: This study aimed to determine the efficacy of an exergame rehabilitation program on pain, anxiety or depression, and fatigue in oncology patients undergoing abdominal surgery. METHODS: The randomized controlled trial evaluated the efficacy of exergame rehabilitation on Pain, Anxiety, Depression, and Fatigue in oncology patients undergoing abdominal surgery. Patients were recruited from October 2022-March 2023 and were randomly assigned to the intervention group (postoperative traditional rehabilitation plus an exergame rehabilitation program) or control group (postoperative traditional rehabilitation). Data were collected at three different times: on admission, in the first 48 h, and on the 7th day after surgery. Primary outcomes were evaluated and monitored with different validated instruments: numeric rating scale (NRS) for pain, Hospital Anxiety and Depression Scale (HADS) to assess the level of anxiety and depression, and the Fatigue Assessment Scale (FAS) to assess physical and psychological fatigue. The length of stay and program completion were secondary outcomes. RESULTS: A total of 128 postoperative patients were recruited. Of these, 58 patients were excluded from the study due to clinical complications related to the surgical procedure (n = 53) or healthcare staff-related reasons (n = 5). Both the control and intervention groups were the same size (n = 35). Lower pain scores were observed on the 7th postoperative day in the group subject to the "exergame rehabilitation program" (p = 0.006). No statistically significant differences were observed for anxiety and depression between the 2 groups. Regarding fatigue, statistically significant differences were observed on admission (p = 0.03), which disappeared 48 h after surgery (p = 0.143). Differences between the groups were observed again on the 7th day after surgery (p = 0.005). CONCLUSIONS: The intervention using exergames was effective in reducing the postoperative pain of the patient undergoing major abdominal surgery and in restoring the levels of fatigue before surgical intervention. However, no differences were observed for anxiety or depression. Future studies with larger samples should be carried out.


Assuntos
Ansiedade , Depressão , Fadiga , Humanos , Masculino , Projetos Piloto , Feminino , Pessoa de Meia-Idade , Ansiedade/prevenção & controle , Neoplasias/cirurgia , Neoplasias/reabilitação , Terapia por Exercício/métodos , Idoso , Adulto , Dor Pós-Operatória , Jogos de Vídeo , Abdome/cirurgia
2.
Cancer Nurs ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38417129

RESUMO

BACKGROUND: Exergames can be an appealing strategy that is integrated into post-abdominal surgery rehabilitation. OBJECTIVE: The aim of this study was to assess the effectiveness of exergame rehabilitation in improving independence in activities of daily living (ADLs) and patient balance after abdominal cancer surgery. METHODS: A randomized control-group study was carried out in an oncological hospital in Portugal. Seventy postoperative patients were included, and data collection took place between January 2023 and May 2023. The patients were randomly assigned to either an exergame rehabilitation program (n = 35) or a traditional rehabilitation program (n = 35). The assessed outcomes were the Barthel and Berg scales, and data collection occurred at 3 different time points: admission, 48 hours postoperatively, and on the seventh day after surgery. RESULTS: At the third assessment, a statistically significant difference was observed between the 2 groups for both indicators, ADLs and balance. CONCLUSIONS: There was an improvement in ADLs and balance in the exergames group. By the seventh day after surgery, the intervention group showed improvement in balance and ADLs compared with the control group. IMPLICATIONS FOR PRACTICE: The use of exergames can be a solution to the challenges of traditional rehabilitation methods after abdominal surgery for cancer for postoperative patients. This is the first study carried out in this specific population.

3.
Bioconjug Chem ; 34(11): 2014-2021, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37556437

RESUMO

The neuropeptide-Y (NPY) family acts through four G protein-coupled receptor subtypes in humans, namely, Y1, Y2, Y4, and Y5. A growing body of evidence suggest the involvement of the NPY system in several cancers, notably the Y5 subtype, thus acting as a relevant target for the development of radiopharmaceuticals for imaging or targeted radionuclide therapy (TRT). Here, the [cPP(1-7),NPY(19-23),Ala31,Aib32,Gln34]hPP scaffold, further referred to as sY5ago, was modified with a DOTA chelator and radiolabeled with 68Ga and 111In and investigated in vitro and in vivo using the MCF-7 model. For in vivo studies, MCF-7 cells were orthotopically implanted in female nude mice and imaging with small animal positron emission tomography/computed tomography (µPET/CT) was performed. At the end of imaging, the mice were sacrificed. A scrambled version of sY5ago, which was also modified with a DOTA chelator, served as a negative control (DOTA-[Nle]sY5ago_scrambled). sY5ago and DOTA-sY5ago showed subnanomolar affinity toward the Y5 (0.9 ± 0.1 and 0.8 ± 0.1 nM, respectively) and a single binding site at the Y5 was identified. [68Ga]Ga-DOTA-sY5ago and [111In]In-DOTA-sY5ago were hydrophilic and showed high specific internalization (1.61 ± 0.75%/106 cells at 1 h) and moderate efflux (55% of total binding externalized at 45 min). On µPET/CT images, most of the signal was depicted in the kidneys and the liver. MCF-7 tumors were clearly visualized. On biodistribution studies, [68Ga]Ga-DOTA-sY5ago was eliminated by the kidneys (∼60 %ID/g). The kidney uptake is Y5-mediated. A specific uptake was also noted in the liver (5.09 ± 1.15 %ID/g vs 1.13 ± 0.21 %ID/g for [68Ga]Ga-DOTA-[Nle]sY5ago_scrambled, p < 0.05), the lungs (1.03 ± 0.34 %ID/g vs 0.20 %ID/g, p < 0.05), and the spleen (0.85 ± 0.09%ID/g vs 0.16 ± 0.16%ID/g, p < 0.05). In MCF-7 tumors, [68Ga]Ga-DOTA-sY5ago showed 12-fold higher uptake than [68Ga]Ga-DOTA-[Nle]sY5ago_scrambled (3.43 ± 2.32 vs 0.27 ± 0.15 %ID/g, respectively, p = 0.0008) at 1 h post-injection. Finally, a proof-of-principle tissular micro-imaging study on a human primary cancer sample showed weak binding of [111In]In-DOTA-sY5ago in prostatic intra-neoplasia and high binding in the ISUP1 lesion while normal prostate was free of signal.


Assuntos
Neoplasias da Próstata , Receptores de Neuropeptídeo Y , Masculino , Camundongos , Humanos , Animais , Receptores de Neuropeptídeo Y/metabolismo , Compostos Radiofarmacêuticos , Radioisótopos de Gálio , Camundongos Nus , Distribuição Tecidual , Quelantes , Tomografia por Emissão de Pósitrons/métodos
4.
JCI Insight ; 5(14)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32516140

RESUMO

Apelin is a well-established mediator of survival and mitogenic signaling through the apelin receptor (Aplnr) and has been implicated in various cancers; however, little is known regarding Elabela (ELA/APELA) signaling, also mediated by Aplnr, and its role and the role of the conversion of its precursor proELA into mature ELA in cancer are unknown. Here, we identified a function of mTORC1 signaling as an essential mediator of ELA that repressed kidney tumor cell growth, migration, and survival. Moreover, sunitinib and ELA showed a synergistic effect in repressing tumor growth and angiogenesis in mice. The use of site-directed mutagenesis and pharmacological experiments provided evidence that the alteration of the cleavage site of proELA by furin induced improved ELA antitumorigenic activity. Finally, a cohort of tumors and public data sets revealed that ELA was only repressed in the main human kidney cancer subtypes, namely clear cell, papillary, and chromophobe renal cell carcinoma. Aplnr was expressed by various kidney cells, whereas ELA was generally expressed by epithelial cells. Collectively, these results showed the tumor-suppressive role of mTORC1 signaling mediated by ELA and established the potential use of ELA or derivatives in kidney cancer treatment.


Assuntos
Receptores de Apelina/genética , Apelina/genética , Carcinoma de Células Renais/genética , Hormônios Peptídicos/genética , Animais , Apelina/metabolismo , Cálcio/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Furina/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Rim/efeitos dos fármacos , Rim/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos , Sunitinibe/farmacologia , Proteínas Supressoras de Tumor/genética
5.
EJNMMI Res ; 10(1): 16, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32124111

RESUMO

BACKGROUND: Targeting G protein-coupled receptors on the surface of cancer cells with peptide ligands is a promising concept for the selective tumor delivery of therapeutically active cargos, including radiometals for targeted radionuclide therapy (TRT). Recently, the radiolanthanide terbium-161 (161Tb) gained significant interest for TRT application, since it decays with medium-energy ß-radiation but also emits a significant amount of conversion and Auger electrons with short tissue penetration range. The therapeutic efficiency of radiometals emitting Auger electrons, like 161Tb, can therefore be highly boosted by an additional subcellular delivery into the nucleus, in order to facilitate maximum dose deposition to the DNA. In this study, we describe the design of a multifunctional, radiolabeled neuropeptide-Y (NPY) conjugate, to address radiolanthanides to the nucleus of cells naturally overexpressing the human Y1 receptor (hY1R). By using solid-phase peptide synthesis, the hY1R-preferring [F7,P34]-NPY was modified with a fatty acid, a cathepsin B-cleavable linker, followed by a nuclear localization sequence (NLS), and a DOTA chelator (compound pb12). In this proof-of-concept study, labeling was performed with either native terbium-159 (natTb), as surrogate for 161Tb, or with indium-111 (111In). RESULTS: [natTb]Tb-pb12 showed a preserved high binding affinity to endogenous hY1R on MCF-7 cells and was able to induce receptor activation and internalization similar to the hY1R-preferring [F7,P34]-NPY. Specific internalization of the 111In-labeled conjugate into MCF-7 cells was observed, and importantly, time-dependent nuclear uptake of 111In was demonstrated. Study of metabolic stability showed that the peptide is insufficiently stable in human plasma. This was confirmed by injection of [111In]In-pb12 in nude mice bearing MCF-7 xenograft which showed specific uptake only at very early time point. CONCLUSION: The multifunctional NPY conjugate with a releasable DOTA-NLS unit represents a promising concept for enhanced TRT with Auger electron-emitting radiolanthanides. Our research is now focusing on improving the reported concept with respect to the poor plasmatic stability of this promising radiopeptide.

6.
Cells ; 9(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075246

RESUMO

The peptide ERα17p, which corresponds to the 295-311 fragment of the hinge/AF2 domains of the human estrogen receptor α (ERα), exerts apoptosis in breast cancer cells through a mechanism involving the G protein-coupled estrogen-dependent receptor GPER. Besides this receptor-mediated mechanism, we have detected a direct interaction (Kd value in the micromolar range) of this peptide with lipid vesicles mimicking the plasma membrane of eukaryotes. The reversible and not reversible pools of interacting peptide may correspond to soluble and aggregated membrane-interacting peptide populations, respectively. By using circular dichroism (CD) spectroscopy, we have shown that the interaction of the peptide with this membrane model was associated with its folding into ß sheet. A slight leakage of the 5(6)-fluorescein was also observed, indicating lipid bilayer permeability. When the peptide was incubated with living breast cancer cells at the active concentration of 10 µM, aggregates were detected at the plasma membrane under the form of spheres. This insoluble pool of peptide, which seems to result from a fibrillation process, is internalized in micrometric vacuoles under the form of fibrils, without evidence of cytotoxicity, at least at the microscopic level. This study provides new information on the interaction of ERα17p with breast cancer cell membranes as well as on its mechanism of action, with respect to direct membrane effects.


Assuntos
Neoplasias da Mama/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Fenômenos Biofísicos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Bicamadas Lipídicas/química , Células MCF-7 , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/química , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Ressonância de Plasmônio de Superfície
7.
Biochim Biophys Acta Biomembr ; 1862(6): 183215, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061645

RESUMO

The biophysical characterisation of membrane proteins and their interactions with lipids in native membrane habitat remains a major challenge. Indeed, traditional solubilisation procedures with detergents often causes the loss of native lipids surrounding membrane proteins, which ultimately impacts structural and functional properties. Recently, copolymer-based nanodiscs have emerged as a highly promising tool, thanks to their unique ability of solubilising membrane proteins directly from native membranes, in the shape of discoidal patches of lipid bilayers. While this methodology finally set us free from the use of detergents, some limitations are however associated with the use of such copolymers. Among them, one can cite the tedious control of the nanodiscs size, their instability in basic pH and in the presence of divalent cations. In this respect, many variants of the widely used Styrene Maleic Acid (SMA) copolymer have been developed to specifically address those limitations. With the multiplication of new SMA copolymer variants and the growing interest in copolymer-based nanodiscs for the characterisation of membrane proteins, there is a need to better understand and control their formation. Among the techniques used to characterise the solubilisation of lipid bilayer by amphipathic molecules, cryo-TEM, 31P NMR, DLS, ITC and fluorescence spectroscopy are the most widely used, with a consensus made in the sense that a combination of these techniques is required. In this work, we propose to evaluate the capacity of Microfluidic Diffusional Sizing (MDS) as a new method to follow copolymer nanodiscs formation. Originally designed to determine protein size through laminar flow diffusion, we present a novel application along with a protocol development to observe nanodiscs formation by MDS. We show that MDS allows to precisely measure the size of nanodiscs, and to determine the copolymer/lipid ratio at the onset of solubilisation. Finally, we use MDS to characterise peptide/nanodisc interaction. The technique shows a promising ability to highlight the pivotal role of lipids in promoting interactions through a case study with an aggregating peptide. This confirmed the relevance of using the MDS and nanodiscs as biomimetic models for such investigations.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Microfluídica/métodos , Nanoestruturas/química , Animais , Difusão , Humanos , Bicamadas Lipídicas/metabolismo , Maleatos/química , Proteínas de Membrana/metabolismo , Tamanho da Partícula , Peptídeos/metabolismo , Polímeros/química , Poliestirenos/química , Solubilidade
8.
FEBS J ; 287(11): 2367-2385, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31738467

RESUMO

The chemokine CCR5 receptor is target of maraviroc, a negative allosteric modulator of CCR5 that blocks the HIV protein gp120 from associating with the receptor, thereby inhibiting virus cellular entry. As noted with other G-protein-coupled receptor family members, the role of the lipid environment in CCR5 signaling remains obscure and very modestly investigated. Controversial literature on the impact of cholesterol (Chol) depletion in HIV infection and CCR5 signaling, including the hypothesis that Chol depletion could inhibit HIV infection, lead us to focus on the understanding of Chol impact in the first stages of receptor activation. To address this aim, the approach chosen was to employ reconstituted model lipid systems of controlled lipid composition containing CCR5 from two distinct expression systems: Pichia pastoris and cell-free expression. The characterization of receptor/ligand interaction in terms of total binding or competition binding assays was independently performed by plasmon waveguide resonance and fluorescence anisotropy, respectively. Maraviroc, a potent receptor antagonist, was the ligand investigated. Additionally, coarse-grained molecular dynamics simulation was employed to investigate Chol impact in the receptor-conformational flexibility and dynamics. Results obtained with receptor produced by different expression systems and using different biophysical approaches clearly demonstrate a considerable impact of Chol in the binding affinity of maraviroc to the receptor and receptor-conformational dynamics. Chol considerably decreases maraviroc binding affinity to the CCR5 receptor. The mechanisms by which this effect occurs seem to involve the adoption of distinct receptor-conformational states with restrained structural dynamics and helical motions in the presence of Chol.


Assuntos
Colesterol/metabolismo , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Receptores CCR5/genética , Colesterol/genética , HIV/patogenicidade , Infecções por HIV/virologia , Humanos , Ligantes , Maraviroc/farmacologia , Receptores Virais/genética , Saccharomycetales/genética , Ressonância de Plasmônio de Superfície , Internalização do Vírus/efeitos dos fármacos
9.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505894

RESUMO

Cell-penetrating peptides (CPPs) are short peptides that can translocate and transport cargoes into the intracellular milieu by crossing biological membranes. The mode of interaction and internalization of cell-penetrating peptides has long been controversial. While their interaction with anionic membranes is quite well understood, the insertion and behavior of CPPs in zwitterionic membranes, a major lipid component of eukaryotic cell membranes, is poorly studied. Herein, we investigated the membrane insertion of RW16 into zwitterionic membranes, a versatile CPP that also presents antibacterial and antitumor activities. Using complementary approaches, including NMR spectroscopy, fluorescence spectroscopy, circular dichroism, and molecular dynamic simulations, we determined the high-resolution structure of RW16 and measured its membrane insertion and orientation properties into zwitterionic membranes. Altogether, these results contribute to explaining the versatile properties of this peptide toward zwitterionic lipids.


Assuntos
Membrana Celular/química , Peptídeos Penetradores de Células/química , Arginina/química , Dicroísmo Circular , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
10.
FEBS J ; 286(18): 3664-3683, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31116904

RESUMO

The transient receptor potential ankyrin 1 (TRPA1) channel is a polymodal sensor of environmental irritant compounds, endogenous proalgesic agents, and cold. Upon activation, TRPA1 channels increase cellular calcium levels via direct permeation and trigger signaling pathways that hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2 ) in the inner membrane leaflet. Our objective was to determine the extent to which a putative PIP2 -interaction site (Y1006-Q1031) is involved in TRPA1 regulation. The interactions of two specific peptides (L992-N1008 and T1003-P1034) with model lipid membranes were characterized by biophysical approaches to obtain information about affinity, peptide secondary structure, and peptide effect in the lipid organization. The results indicate that the two peptides interact with lipid membranes only if PIP2 is present and their affinities depend on the presence of calcium. Using whole-cell electrophysiology, we demonstrate that mutation at F1020 produced channels with faster activation kinetics and with a rightward shifted voltage-dependent activation curve by altering the allosteric constant that couples voltage sensing to pore opening. We assert that the presence of PIP2 is essential for the interaction of the two peptide sequences with the lipid membrane. The putative phosphoinositide-interacting domain comprising the highly conserved F1020 contributes to the stabilization of the TRPA1 channel gate.


Assuntos
Metabolismo dos Lipídeos/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipídeos/química , Canal de Cátion TRPA1/química , Fenômenos Biofísicos , Cálcio/química , Células HEK293 , Humanos , Cinética , Potenciais da Membrana/genética , Peptídeos/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfolipídeos/metabolismo , Estrutura Secundária de Proteína , Transdução de Sinais/genética , Canal de Cátion TRPA1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA