Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 2): 133312, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914406

RESUMO

Recently, polysaccharide-based hydrogels crosslinked with the trivalent iron cation have attracted interest due to their remarkable properties that include high mechanical stability, stimuli-responsiveness, and enhanced absorptivity. In this study, a Fe3+ crosslinked hydrogel was prepared using the biocompatible extracellular polysaccharide (EPS) secreted by the marine bacterium Alteromonas macleodii Mo169. Hydrogels with mechanical strengths (G') ranging from 0.3 kPa to 44.5 kPa were obtained as a result of the combination of different Fe3+ (0.05-9.95 g L-1) and EPS (0.3-1.7 %) concentrations. All the hydrogels had a water content above 98 %. Three different hydrogels, named HA, HB, and HC, were chosen for further characterization. With strength values (G') of 3.2, 28.9, and 44.5 kPa, respectively, these hydrogels might meet the strength requirements for several specific applications. Their mechanical resistance increased as higher Fe3+ and polymer concentrations were used in their preparation (the compressive hardness increased from 8.7 to 192.1 kPa for hydrogel HA and HC, respectively). In addition, a tighter mesh was noticed for HC, which was correlated to its lower swelling ratio value compared to HA and HB. Overall, this preliminary study highlighted the potential of these hydrogels for tissue engineering, drug delivery, or wound healing applications.

2.
Foods ; 12(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37174463

RESUMO

The efficiency of natural olive pomace extracts for enhancing the quality of fresh-cut apples was compared with commercial ascorbic acid and two different packaging films (biodegradable polylactic acid (PLA) and oriented polypropylene (OPP)) were tested. The composition of atmosphere inside the packages, the physicochemical parameters (firmness, weight loss and color), the microbial load, total phenolic content and antioxidant activity of fresh-cut apples were evaluated throughout 12 days of storage at 4 °C. After 12 days of refrigerated storage, a significant decrease in O2 was promoted in PLA films, and the weight loss of the whole packaging was higher in PLA films (5.4%) than in OPP films (0.2%). Natural olive pomace extracts reduced the load of mesophilic bacteria (3.4 ± 0.1 log CFU/g and 2.4 ± 0.1 log CFU/g for OPP and PLA films, respectively) and filamentous fungi (3.3 ± 0.1 log CFU/g and 2.44 ± 0.05 log CFU/g for OPP and PLA films, respectively) growth in fresh-cut apples after five days of storage at 4 °C, and no detection of coliforms was verified throughout the 12 days of storage. In general, the olive pomace extract preserved or improved the total phenolic index and antioxidant potential of the fruit, without significant changes in their firmness. Moreover, this extract seemed to be more effective when combined with the biodegradable PLA film packaging. This work can contribute to the availability of effective natural food additives, the sustainability of the olive oil industries and the reduction of environmental impact. It can also be useful in meeting the food industries requirements to develop new functional food products.

3.
Membranes (Basel) ; 11(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34940499

RESUMO

Despite the fact that iongels are very attractive materials for gas separation membranes, they often show mechanical stability issues mainly due to the high ionic liquid (IL) content (≥60 wt%) needed to achieve high gas separation performances. This work investigates a strategy to improve the mechanical properties of iongel membranes, which consists in the incorporation of montmorillonite (MMT) nanoclay, from 0.2 to 7.5 wt%, into a cross-linked poly(ethylene glycol) diacrylate (PEGDA) network containing 60 wt% of the IL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][TFSI]). The iongels were prepared by a simple one-pot method using ultraviolet (UV) initiated polymerization of poly(ethylene glycol) diacrylate (PEGDA) and characterized by several techniques to assess their physico-chemical properties. The thermal stability of the iongels was influenced by the addition of higher MMT contents (>5 wt%). It was possible to improve both puncture strength and elongation at break with MMT contents up to 1 wt%. Furthermore, the highest ideal gas selectivities were achieved for iongels containing 0.5 wt% MMT, while the highest CO2 permeability was observed at 7.5 wt% MMT content, due to an increase in diffusivity. Remarkably, this strategy allowed for the preparation and gas permeation of self-standing iongel containing 80 wt% IL, which had not been possible up until now.

4.
Foods ; 10(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205876

RESUMO

Pineapple peel still contains an important amount of phenolic compounds and vitamins with valuable antioxidant activity. In this way, the aim of this study was the recovery of the bioactive compounds from pineapple peel using environmentally friendly and low-cost techniques, envisaging their application in food products. From the solid-liquid extraction conditions tested, the one delivering an extract with higher total phenolic content and antioxidant capacity was a single extraction step with a solvent-pineapple peel ratio of 1:1 (w/w) for 25 min at ambient temperature, using ethanol-water (80-20%) as a solvent. The resulting extract revealed a total phenolic content value of 11.10 ± 0.01 mg gallic acid equivalent (GAE)/g dry extract, antioxidant activity of 91.79 ± 1.98 µmol Trolox/g dry extract by the DPPH method, and 174.50 ± 9.98 µmol Trolox/g dry extract by the FRAP method. The antioxidant rich extract was subjected to stabilization by the spray drying process at 150 °C of inlet air temperature using maltodextrin (5% w/w) as an encapsulating agent. The results showed that the antioxidant capacity of the encapsulated compounds was maintained after encapsulation. The loaded microparticles obtained, which consist of a bioactive powder, present a great potential to be incorporated in food products or to produce bioactive packaging systems.

5.
Foods ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805309

RESUMO

Fresh figs are very appreciated and have been associated with health benefits. However, these fruits are highly perishable. In this study, edible coatings were studied envisaging their positive effect in enhancing figs' shelf-life. Fig fruits cv. 'Pingo de mel' were harvested at commercial ripening stage and single emulsion-based coatings, composed of chitosan + olive oil and alginate + olive oil, were applied. After coatings application by dipping each fruit in the emulsion-based solutions at 4 °C and drying, the coated fruits were sprayed with crosslinking solutions (6% tripolyphosphate and 1% calcium chloride for chitosan and alginate-based coatings, respectively). Then, were maintained at 4 °C and analyzed after 1, 7, 14 and 19 days of storage. After each time interval, fruits were further maintained at 25 °C for 2 days. The results have shown that coatings were effective on delaying fungal decay and postharvest ripening indicators (respiration rate, mass loss, softening and total soluble solids/titratable acidity ratio). The results foresee a fruits' shelf life between 14 and 19 days under refrigeration at 4 °C that may be followed up to 2 days at ambient temperature, higher than that estimated for uncoated fruits (less than 14 days at 4 °C plus to 2 days at ambient temperature).

6.
Bioengineering (Basel) ; 7(1)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183337

RESUMO

Chitin-glucan complex (CGC) is a copolymer composed of chitin and glucan moieties extracted from the cell-walls of several yeasts and fungi. Despite its proven valuable properties, that include antibacterial, antioxidant and anticancer activity, the utilization of CGC in many applications is hindered by its insolubility in water and most solvents. In this study, NaOH/urea solvent systems were used for the first time for solubilization of CGC extracted from the yeast Komagataella pastoris. Different NaOH/urea ratios (6:8, 8:4 and 11:4 (w/w), respectively) were used to obtain aqueous solutions using a freeze/thaw procedure. There was an overall solubilization of 63-68%, with the highest solubilization rate obtained for the highest tested urea concentration (8 wt%). The regenerated polymer, obtained by dialysis of the alkali solutions followed by lyophilization, formed porous macrostructures characterized by a chemical composition similar to that of the starting co-polymer, although the acetylation degree decreased from 61.3% to 33.9-50.6%, indicating that chitin was converted into chitosan, yielding chitosan-glucan complex (ChGC). Consistent with this, there was a reduction of the crystallinity index and thermal degradation temperature. Given these results, this study reports a simple and green procedure to solubilize CGC and obtain aqueous ChGC solutions that can be processed as novel biomaterials.

7.
Molecules ; 24(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731614

RESUMO

In recent years, great interest has been focused on using natural antioxidants in food products, due to studies indicating possible adverse effects that may be related to the consumption of synthetic antioxidants. A variety of plant materials are known to be natural sources of antioxidants, such as herbs, spices, seeds, fruits and vegetables. The interest in these natural components is not only due to their biological value, but also to their economic impact, as most of them may be extracted from food by-products and under-exploited plant species. This article provides an overview of current knowledge on natural antioxidants: their sources, extraction methods and stabilization processes. In addition, recent studies on their applications in the food industry are also addressed; namely, as preservatives in different food products and in active films for packaging purposes and edible coatings.


Assuntos
Antioxidantes/química , Conservação de Alimentos , Frutas/química , Sementes/química , Especiarias , Verduras/química
8.
Mater Sci Eng C Mater Biol Appl ; 78: 389-397, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575999

RESUMO

Sterilization of hydrogels is challenging due to their often reported sensitivity to conventional methods involving heat or radiation. Although aseptic manufacturing is a possibility, terminal sterilization is safer in biological terms, leading to a higher overall efficiency, and thus should be used whenever it is possible. The main goal of this work was to study the applicability of an innovative ozone gas terminal sterilization method for silicone-based hydrogels and compare its efficacy and effects with those of traditional sterilization methods: steam heat and gamma irradiation. Ozone gas sterilization is a method with potential interest since it is reported as a low cost green method, does not leave toxic residues and can be applied to thermosensitive materials. A hydrogel intended for ophthalmological applications, based on tris(trimethylsiloxy)silyl] propyl methacrylate, was prepared and extensively characterized before and after the sterilization procedures. Alterations regarding transparency, swelling, wettability, ionic permeability, friction coefficient, mechanical properties, topography and morphology and chemical composition were monitored. Efficacy of the ozonation was accessed by performing controlled contaminations and sterility tests. In vitro cytotoxicity testes were also performed. The results show that ozonation may be applied to sterilize the studied material. A treatment with 8 pulses allowed sterilizing the material with bioburdens≤103CFU/mL, preserving all the studied properties within the required known values for contact lenses materials. However, a higher exposure (10 pulses) led to some degradation of the material and induced mild cytotoxicity. Steam heat sterilization led to an increase of swelling capacity and a decrease of the water contact angle. Regarding gamma irradiation, the increase of irradiation dose led to an increase of the friction coefficient. The higher dose (25kGy) originated surface degradation and affected the mechanical properties of the hydrogel by inducing a significant increase of the Young's modulus. Overall, the results show that ozonation may be considered as a valid and promising alternative for the sterilization of silicon-based hydrogels for biomedical applications.


Assuntos
Hidrogéis/química , Ozônio , Silicones
9.
Int J Biol Macromol ; 82: 243-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26484598

RESUMO

Olive oil deodorizer distillate (OODD) was used for the first time as the sole substrate for polyhydroxyalkanoates (PHA) production by the bacterium Pseudomonas resinovorans in bioreactor cultivation. A PHA content in the biomass of 36 ± 0.8 wt% was attained within 19 h of cultivation. A final polymer concentration of 4.7 ± 0.3 gL(-1) was reached, corresponding to a volumetric productivity of 5.9 ± 0.2 gL(-1)day(-1). The PHA was composed of 3-hydroxyoctanoate (48.3 ± 7.3 mol%), 3-hydroxydecanoate (31.6 ± 2.6 mol%), 3-hydroxyhexanoate (12.1 ± 1.1 mol%) and 3-hydroxydodecanoate (8.0 ± 0.7 mol%) and it had a glue-like consistency that did not solidify at room temperature. The polymer was highly amorphous, as shown by its low crystallinity of 6 ± 0.2%, with low melting and glass transition temperatures of 36 ± 1.2 and -16 ± 0.8°C, respectively. The polymer exhibited a shear thinning behavior and a mechanical spectrum with a predominant viscous contribution. Its shear bond strength for wood (67 ± 9.4 kPa) and glass (65 ± 7.3 kPa) suggests it may be used for the development of biobased glues.


Assuntos
Azeite de Oliva/química , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/química , Biomassa , Biopolímeros/biossíntese , Biopolímeros/química , Biopolímeros/isolamento & purificação , Fermentação , Peso Molecular , Poli-Hidroxialcanoatos/isolamento & purificação , Viscosidade
10.
Bioresour Technol ; 157: 360-3, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24594316

RESUMO

Spent coffee grounds (SCG) oil was obtained by supercritical carbon dioxide (scCO2) extraction in a pilot plant apparatus, with an oil extraction yield of 90% at a 35kgkg(-1) CO2/SCG ratio. Cupriavidus necator DSM 428 was cultivated in 2L bioreactor using extracted SCG oil as sole carbon source for production of polyhydroxyalkanoates. The culture reached a cell dry weight of 16.7gL(-1) with a polymer content of 78.4% (w/w). The volumetric polymer productivity and oil yield were 4.7gL(-1)day(-1) and 0.77gg(-1), respectively. The polymer produced was a homopolymer of 3-hydroxybutyrate with an average molecular weight of 2.34×10(5) and a polydispersity index of 1.2. The polymer exhibited brittle behaviour, with very low elongation at break (1.3%), tensile strength at break of 16MPa and Young's Modulus of 1.0GPa. Results show that SCG can be a bioresource for polyhydroxyalkanoates production with interesting properties.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Café/química , Cupriavidus necator/metabolismo , Óleos/química , Poli-Hidroxialcanoatos/biossíntese , Resíduos , Biomassa , Cupriavidus necator/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA