Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 126, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291375

RESUMO

Copy-number variations (CNVs), which refer to deletions and duplications of chromosomal segments, represent a significant source of variation among individuals, contributing to human evolution and being implicated in various diseases ranging from mental illness and developmental disorders to cancer. Despite the development of several methods for detecting copy number variations based on next-generation sequencing (NGS) data, achieving robust detection performance for CNVs with arbitrary coverage and amplitude remains challenging due to the inherent complexity of sequencing samples. In this paper, we propose an alternative method called OTSUCNV for CNV detection on whole genome sequencing (WGS) data. This method utilizes a newly designed adaptive sequence segmentation algorithm and an OTSU-based CNV prediction algorithm, which does not rely on any distribution assumptions or involve complex outlier factor calculations. As a result, the effective detection of CNVs is achieved with lower computational complexity. The experimental results indicate that the proposed method demonstrates outstanding performance, and hence it may be used as an effective tool for CNV detection.


Assuntos
Algoritmos , Variações do Número de Cópias de DNA , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento Completo do Genoma
2.
Biology (Basel) ; 10(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202028

RESUMO

Copy number variation (CNV) is a common type of structural variation in the human genome. Accurate detection of CNVs from tumor genomes can provide crucial information for the study of tumor genesis and cancer precision diagnosis. However, the contamination of normal genomes in tumor genomes and the crude profiles of the read depth make such a task difficult. In this paper, we propose an alternative approach, called CIRCNV, for the detection of CNVs from sequencing data. CIRCNV is an extension of our previously developed method CNV-LOF, which uses local outlier factors to predict CNVs. Comparatively, CIRCNV can be performed on individual tumor samples and has the following two new features: (1) it transfers the read depth profile from a line shape to a circular shape via a polar coordinate transformation, in order to improve the efficiency of the read depth (RD) profile for the detection of CNVs; and (2) it performs a second round of CNV declaration based on the truth circular RD profile, which is recovered by estimating tumor purity. We test and validate the performance of CIRCNV based on simulation and real sequencing data and perform comparisons with several peer methods. The results demonstrate that CIRCNV can obtain superior performance in terms of sensitivity and precision. We expect that our proposed method will be a supplement to existing methods and become a routine tool in the field of variation analysis of tumor genomes.

3.
Front Cell Dev Biol ; 9: 796249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004691

RESUMO

Copy number variation (CNV) is a well-known type of genomic mutation that is associated with the development of human cancer diseases. Detection of CNVs from the human genome is a crucial step for the pipeline of starting from mutation analysis to cancer disease diagnosis and treatment. Next-generation sequencing (NGS) data provides an unprecedented opportunity for CNVs detection at the base-level resolution, and currently, many methods have been developed for CNVs detection using NGS data. However, due to the intrinsic complexity of CNVs structures and NGS data itself, accurate detection of CNVs still faces many challenges. In this paper, we present an alternative method, called KNNCNV (K-Nearest Neighbor based CNV detection), for the detection of CNVs using NGS data. Compared to current methods, KNNCNV has several distinctive features: 1) it assigns an outlier score to each genome segment based solely on its first k nearest-neighbor distances, which is not only easy to extend to other data types but also improves the power of discovering CNVs, especially the local CNVs that are likely to be masked by their surrounding regions; 2) it employs the variational Bayesian Gaussian mixture model (VBGMM) to transform these scores into a series of binary labels without a user-defined threshold. To evaluate the performance of KNNCNV, we conduct both simulation and real sequencing data experiments and make comparisons with peer methods. The experimental results show that KNNCNV could derive better performance than others in terms of F1-score.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA