Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anesthesiol Res Pract ; 2024: 6418429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39105128

RESUMO

Introduction: Emergence agitation (EA) is one of the common problems during recovery from general anesthesia, especially in children. In this study, we investigated the effect of dexmedetomidine on the control of agitation after anesthesia with sevoflurane in children. Method: This randomized control-placebo, double-blind prospective clinical trial was conducted on seventy-six children between 2 and 7 years with ASA (American Society of Anesthesiologists) class I who were candidates for elective adenoidectomy surgery and tonsillectomy. Participants were selected by an available sampling method. Patients were randomly placed in one of the two groups D (dexmedetomidine 0.5 µg/kg infusion within ten minutes) or P (placebo: normal saline infusion within ten minutes). A four-point scale evaluated agitation. Pain evaluation was done by FLACC (faces, legs, activity, cry, and consolability). The statistical software was SPSS version 23. P < 0.05 was considered statistically significant. Results: The level of agitation was significantly lower in the intervention group (P < 0.05), except after 40 minutes in the PACU (Post Anesthesia Care Unit) (P=1.00). Patients in the control group experienced high pain scores when admitted at PACU, 10, 20, and 30 minutes after admission at PACU (P < 0.05). Pethidine and metoclopramide prescriptions in the intervention group were lower than in the control group (P < 0.05). Shivering occurred in five patients in the intervention group and nine in the control groups (P=0.032). Hypotension that required intervention occurred in 3 patients in the intervention group and one in the control group (P=0.024). Conclusion: Our trial demonstrated that the prescription of 0.5 µg/kg of dexmedetomidine within ten minutes after intubation significantly reduced the EA frequency, pain severity, analgesic consumption, and PONV (postoperative nausea and vomiting). However, it caused delays in the emergence from anesthesia. This trial is registered with IRCT20160430027677N14.

2.
Cell Biochem Funct ; 42(4): e4071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863255

RESUMO

Metformin (MET) is a preferred drug for the treatment of type 2 diabetes mellitus. Recent studies show that apart from its blood glucose-lowering effects, it also inhibits the development of various tumours, by inducing autophagy. Various studies have confirmed the inhibitory effects of MET on cancer cell lines' propagation, migration, and invasion. The objective of the study was to comprehensively review the potential of MET as an anticancer agent, particularly focusing on its ability to induce autophagy and inhibit the development and progression of various tumors. The study aimed to explore the inhibitory effects of MET on cancer cell proliferation, migration, and invasion, and its impact on key signaling pathways such as adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and PI3K. This review noted that MET exerts its anticancer effects by regulating key signalling pathways such as phosphoinositide 3-kinase (PI3K), LC3-I and LC3-II, Beclin-1, p53, and the autophagy-related gene (ATG), inhibiting the mTOR protein, downregulating the expression of p62/SQSTM1, and blockage of the cell cycle at the G0/G1. Moreover, MET can stimulate autophagy through pathways associated with the 5' AMPK, thereby inhibiting he development and progression of various human cancers, including hepatocellular carcinoma, prostate cancer, pancreatic cancer, osteosarcoma, myeloma, and non-small cell lung cancer. In summary, this detailed review provides a framework for further investigations that may appraise the autophagy-induced anticancer potential of MET and its repurposing for cancer treatment.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Metformina , Neoplasias , Transdução de Sinais , Serina-Treonina Quinases TOR , Metformina/farmacologia , Humanos , Autofagia/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais
3.
J Biochem Mol Toxicol ; 38(6): e23719, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764138

RESUMO

Cancer stem cells (CSCs) are associated with the tumor microenvironment (TME). CSCs induce tumorigenesis, tumor recurrence and progression, and resistance to standard therapies. Indeed, CSCs pose an increasing challenge to current cancer therapy due to their stemness or self-renewal properties. The molecular and cellular interactions between heterogeneous CSCs and surrounding TME components and tumor-supporting immune cells show synergistic effects toward treatment failure. In the immunosuppressive TME, CSCs express various immunoregulatory proteins, growth factors, metabolites and cytokines, and also produce exosomes, a type of extracellular vesicles, to protect themselves from host immune surveillance. Among these, the identification and application of CSC-derived exosomes could be considered for the development of therapeutic approaches to eliminate CSCs or cancer, in addition to targeting the modulators that remodel the composition of the TME, as reviewed in this study. Here, we introduce the role of CSCs and how their interaction with TME complicates immunotherapies, and then present the CSC-based immunotherapy and the limitation of these therapies. We describe the biology and role of tumor/CSC-derived exosomes that induce immune suppression in the TME, and finally, introduce their potentials for the development of CSC-based targeted immunotherapy in the future.


Assuntos
Células Dendríticas , Exossomos , Inibidores de Checkpoint Imunológico , Imunoterapia , Células-Tronco Neoplásicas , Microambiente Tumoral , Humanos , Exossomos/imunologia , Exossomos/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Vacinas Anticâncer/imunologia , Animais
4.
Cell Biochem Funct ; 42(3): e4018, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644608

RESUMO

Long noncoding RNAs (lncRNAs) are a category of noncoding RNAs characterized by their length, often exceeding 200 nucleotides. There is a growing body of data that indicate the significant involvement of lncRNAs in a wide range of disorders, including cancer. lncRNA H19 was among the initial lncRNAs to be identified and is transcribed from the H19 gene. The H19 lncRNA exhibits significant upregulation in a diverse range of human malignancies, such as breast, colorectal, pancreatic, glioma, and gastric cancer. Moreover, the overexpression of H19 is frequently associated with a worse prognosis among individuals diagnosed with cancer. H19 has been shown to have a role in facilitating several cellular processes, including cell proliferation, invasion, migration, epithelial-mesenchymal transition, metastasis, and apoptosis. This article summarizes the aberrant upregulation of H19 in human malignancies, indicating promising avenues for future investigations on cancer diagnostics and therapeutic interventions.


Assuntos
Neoplasias , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Apoptose , Regulação Neoplásica da Expressão Gênica , Movimento Celular
5.
Cell Biochem Funct ; 42(2): e3971, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509767

RESUMO

Autophagy, as a highly conserved cellular process, participates in cellular homeostasis by degradation and recycling of damaged organelles and proteins. Besides, autophagy has been evidenced to play a dual role through cancer initiation and progression. In the early stage, it may have a tumor-suppressive function through inducing apoptosis and removing damaged cells and organelles. However, late stages promote tumor progression by maintaining stemness features and induction of chemoresistance. Therefore, identifying and targeting molecular mechanisms involved in autophagy is a potential therapeutic strategy for human cancers. Multiple transcription factors (TFs) are involved in the regulation of autophagy by modulating the expression of autophagy-related genes (ATGs). In addition, a wide array of long noncoding RNAs (lncRNAs), a group of regulatory ncRNAs, have been evidenced to regulate the function of these autophagy-related TFs through tumorigenesis. Subsequently, the lncRNAs/TFs/ATGs axis shows great potential as a therapeutic target for human cancers. Therefore, this review aimed to summarize new findings about the role of lncRNAs in regulating autophagy-related TFs with therapeutic perspectives.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Neoplasias/genética , Apoptose , Autofagia
6.
Cell Biochem Funct ; 42(2): e3978, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515237

RESUMO

Ovarian cancer continues to be a difficult medical issue that affects millions of individuals worldwide. Important platforms for cancer immunotherapy include checkpoint inhibitors, chimeric antigen receptor T cells, bispecific antibodies, cancer vaccines, and other cell-based treatments. To avoid numerous infectious illnesses, conventional vaccinations based on synthetic peptides, recombinant subunit vaccines, and live attenuated and inactivated pathogens are frequently utilized. Vaccine manufacturing processes, however, are not entirely safe and carry a significant danger of contaminating living microorganisms. As a result, the creation of substitute vaccinations is required for both viral and noninfectious illnesses, including cancer. Recently, there has been testing of nucleic acid vaccines, or NAVs, as a cancer therapeutic. Tumor antigens (TAs) are genetically encoded by DNA and mRNA vaccines, which the host uses to trigger immune responses against ovarian cancer cells that exhibit the TAs. Despite being straightforward, safe, and easy to produce, NAVs are not currently thought to be an ideal replacement for peptide vaccines. Some obstacles to this strategy include selecting the appropriate therapeutic agents (TAs), inadequate immunogenicity, and the immunosuppressive characteristic of ovarian cancer. We focus on strategies that have been employed to increase NAVs' effectiveness in the fight against ovarian cancer in this review.


Assuntos
Vacinas Anticâncer , Neoplasias Ovarianas , Humanos , Feminino , Vacinas Baseadas em Ácido Nucleico , Neoplasias Ovarianas/tratamento farmacológico , Antígenos de Neoplasias , Vacinas Anticâncer/uso terapêutico
7.
Pathol Res Pract ; 255: 155137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324962

RESUMO

Metastatic cancer, which accounts for the majority of cancer fatalities, is a difficult illness to treat. Currently used cancer treatments include radiation therapy, chemotherapy, surgery, and targeted treatment (immune, gene, and hormonal). The disadvantages of these treatments include a high risk of tumor recurrence and surgical complications that may result in permanent deformities. On the other hand, most chemotherapy drugs are small molecules, which usually have unfavorable side effects, low absorption, poor selectivity, and multi-drug resistance. Anticancer drugs can be delivered precisely to the cancer spot by encapsulating them to reduce side effects. Stimuli-responsive nanocarriers can be used for drug release at cancer sites and provide target-specific delivery. As previously stated, metastasis is the primary cause of cancer-related mortality. We have evaluated the usage of nano-medications in the treatment of some metastatic tumors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos
8.
Cell Biochem Funct ; 42(1): e3904, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38102946

RESUMO

The regulation of signal transmission and biological processes, such as cell proliferation, apoptosis, metabolism, migration, and angiogenesis are greatly influenced by the PI3K/AKT signaling pathway. Highly conserved endogenous non-protein-coding RNAs known as microRNAs (miRNAs) have the ability to regulate gene expression by inhibiting mRNA translation or mRNA degradation. MiRNAs serve key role in PI3K/AKT pathway as upstream or downstream target, and aberrant activation of this pathway contributes to the development of cancers. A growing body of research shows that miRNAs can control the PI3K/AKT pathway to control the biological processes within cells. The expression of genes linked to cancers can be controlled by the miRNA/PI3K/AKT axis, which in turn controls the development of cancer. There is also a strong correlation between the expression of miRNAs linked to the PI3K/AKT pathway and numerous clinical traits. Moreover, PI3K/AKT pathway-associated miRNAs are potential biomarkers for cancer diagnosis, therapy, and prognostic evaluation. The role and clinical applications of the PI3K/AKT pathway and miRNA/PI3K/AKT axis in the emergence of cancers are reviewed in this article.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Neoplasias/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Linhagem Celular Tumoral
9.
Pathol Res Pract ; 249: 154770, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37660658

RESUMO

Cancer is a complex genetic anomaly involving coding and non-coding transcript structural and expressive irregularities. A class of tiny non-coding RNAs known as microRNAs (miRNAs) regulates gene expression at the post-transcriptional level by binding only to messenger RNAs (mRNAs). Due to their capacity to target numerous genes, miRNAs have the potential to play a significant role in the development of tumors by controlling several biological processes, including angiogenesis, drug resistance, metastasis, apoptosis, proliferation, and drug resistance. According to several recent studies, miRNA-214 has been linked to the emergence and spread of tumors. The human genome's q24.3 arm contains the DNM3 gene, which is about 6 kb away and includes the microRNA-214. Its primary purpose was the induction of apoptosis in cancerous cells. The multifaceted and complex functions of miR-214 as a modulator in neoplastic conditions have been outlined in the current review.


Assuntos
MicroRNAs , Neoplasias , Humanos , Neoplasias/genética , MicroRNAs/genética , Apoptose , RNA Mensageiro
10.
Int J Biol Macromol ; 251: 126390, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37595701

RESUMO

During the last decades, the ever-increasing incidence of various diseases, like cancer, has led to a high rate of death worldwide. On the other hand, conventional modalities (such as chemotherapy and radiotherapy) have not indicated enough efficiency in the diagnosis and treatment of diseases. Thus, potential novel approaches should be taken into consideration to pave the way for the suppression of diseases. Among novel approaches, biomaterials, like chitosan nanoparticles (CS NPs, N-acetyl-glucosamine and D-glucosamine), have been approved by the FDA for some efficient pharmaceutical applications. These NPs owing to their physicochemical properties, modification with different molecules, biocompatibility, serum stability, less immune response, suitable pharmacokinetics and pharmacodynamics, etc. have received deep attention among researchers and clinicians. More importantly, the impact of CS polysaccharide in the synthesis, preparation, and delivery of metallic NPs (like gold, silver, and magnetic NPs), and combination of CS with these metallic NPs can further facilitate the diagnosis and treatment of diseases. Metallic NPs possess some features, like converting NIR photon energy into thermal energy and anti-microorganism capability, and can be a potential candidate for the diagnosis and treatment of diseases in combination with CS NPs. These combined NPs would be efficient pharmaceuticals in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA