Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 997043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439131

RESUMO

Background: Optical coherence tomography angiography (OCT-A) is a novel technique allowing non-invasive assessment of the retinal vasculature. During relapsing remitting multiple sclerosis (RRMS), retinal vessel loss occurs in eyes suffering from acute optic neuritis and recent data suggest that retinal vessel loss might also be evident in non-affected eyes. We investigated whether alterations of the retinal vasculature are linked to the intrathecal immunity and whether they allow prognostication of the future disease course. Material and methods: This study includes two different patient cohorts recruited at a tertiary German academic multiple sclerosis center between 2018 and 2020 and a cohort of 40 healthy controls. A total of 90 patients with RRMS undergoing lumbar puncture and OCT-A analysis were enrolled into a cross-sectional cohort study to search for associations between the retinal vasculature and the intrathecal immune compartment. We recruited another 86 RRMS patients into a prospective observational cohort study who underwent clinical examination, OCT-A and cerebral magnetic resonance imaging at baseline and during annual follow-up visits to clarify whether alterations of the retinal vessels are linked to RRMS disease activity. Eyes with a history of optic neuritis were excluded from the analysis. Results: Rarefication of the superficial vascular complex occured during RRMS and was linked to higher frequencies of activated B cells and higher levels of the pro-inflammatory cytokines interferon-γ, tumor necrosis factor α and interleukin-17 in the cerebrospinal fluid. During a median follow-up of 23 (interquartile range 14 - 25) months, vessel loss within the superficial (hazard ratio [HR] 1.6 for a 1%-point decrease in vessel density, p=0.01) and deep vascular complex (HR 1.6 for a 1%-point decrease, p=0.05) was associated with future disability worsening. Discussion: Optic neuritis independent rarefication of the retinal vasculature might be linked to neuroinflammatory processes during RRMS and might predict a worse disease course. Thus, OCT-A might be a novel biomarker to monitor disease activity and predict future disability.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Neurite Óptica , Humanos , Esclerose Múltipla/patologia , Estudos Transversais , Estudos Prospectivos , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Progressão da Doença
2.
Proc Natl Acad Sci U S A ; 119(34): e2206208119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969754

RESUMO

Although glioblastoma multiforme (GBM) is not an invariably cold tumor, checkpoint inhibition has largely failed in GBM. In order to investigate T cell-intrinsic properties that contribute to the resistance of GBM to endogenous or therapeutically enhanced adaptive immune responses, we sorted CD4+ and CD8+ T cells from the peripheral blood, normal-appearing brain tissue, and tumor bed of nine treatment-naive patients with GBM. Bulk RNA sequencing of highly pure T cell populations from these different compartments was used to obtain deep transcriptomes of tumor-infiltrating T cells (TILs). While the transcriptome of CD8+ TILs suggested that they were partly locked in a dysfunctional state, CD4+ TILs showed a robust commitment to the type 17 T helper cell (TH17) lineage, which was corroborated by flow cytometry in four additional GBM cases. Therefore, our study illustrates that the brain tumor environment in GBM might instruct TH17 commitment of infiltrating T helper cells. Whether these properties of CD4+ TILs facilitate a tumor-promoting milieu and thus could be a target for adjuvant anti-TH17 cell interventions needs to be further investigated.


Assuntos
Neoplasias Encefálicas , Linfócitos T CD4-Positivos , Glioblastoma , Linfócitos T Auxiliares-Indutores , Neoplasias Encefálicas/patologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Citometria de Fluxo , Glioblastoma/patologia , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos T Auxiliares-Indutores/citologia
3.
J Neurol Neurosurg Psychiatry ; 91(7): 681-686, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32371533

RESUMO

OBJECTIVE: To determine the prevalence of antibodies to Epstein-Barr virus (EBV) in a large cohort of patients with early multiple sclerosis (MS). METHODS: Serum samples were collected from 901 patients with a clinically isolated syndrome (CIS) or early relapsing-remitting multiple sclerosis (RRMS) participating in the German National MS cohort, a prospective cohort of patients with early MS with stringent inclusion criteria. Epstein-Barr nuclear antigen (EBNA)-1 and viral capsid antigen (VCA) antibodies were measured in diluted sera by chemiluminescence immunoassays (CLIAs). Sera of EBNA-1 and VCA antibody-negative patients were retested undiluted by an EBV IgG immunoblot. For comparison, we retrospectively analysed the EBV seroprevalence across different age cohorts, ranging from 0 to >80 years, in a large hospital population (N=16 163) from Berlin/Northern Germany. RESULTS: EBNA-1 antibodies were detected by CLIA in 839 of 901 patients with CIS/RRMS. Of the 62 patients without EBNA-1 antibodies, 45 had antibodies to VCA as detected by CLIA. In all of the remaining 17 patients, antibodies to EBV were detected by immunoblot. Altogether, 901 of 901 (100%) patients with CIS/RRMS were EBV-seropositive. EBV seropositivity increased with age in the hospital population but did not reach 100% in any of the investigated age cohorts. CONCLUSION: The complete EBV seropositivity in this large cohort of patients with early MS strengthens the evidence for a role of EBV in MS. It also suggests that a negative EBV serology in patients with suspected inflammatory central nervous system disease should alert clinicians to consider diagnoses other than MS.


Assuntos
Anticorpos Antivirais/sangue , Herpesvirus Humano 4/imunologia , Esclerose Múltipla/imunologia , Adulto , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Sistema de Registros , Estudos Retrospectivos , Estudos Soroepidemiológicos
4.
Cell Rep ; 26(7): 1854-1868.e5, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759395

RESUMO

Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and "toxic" gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues.


Assuntos
Metilação de DNA , Encefalomielite Autoimune Experimental/imunologia , Fatores de Transcrição Forkhead/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Linfócitos T Reguladores/imunologia , Animais , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/imunologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Epigênese Genética , Feminino , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/imunologia , Impressão Genômica , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/metabolismo
5.
Nat Immunol ; 19(12): 1341-1351, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374128

RESUMO

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) have been characterized in the context of malignancies. Here we show that PMN-MDSCs can restrain B cell accumulation during central nervous system (CNS) autoimmunity. Ly6G+ cells were recruited to the CNS during experimental autoimmune encephalomyelitis (EAE), interacted with B cells that produced the cytokines GM-CSF and interleukin-6 (IL-6), and acquired properties of PMN-MDSCs in the CNS in a manner dependent on the signal transducer STAT3. Depletion of Ly6G+ cells or dysfunction of Ly6G+ cells through conditional ablation of STAT3 led to the selective accumulation of GM-CSF-producing B cells in the CNS compartment, which in turn promoted an activated microglial phenotype and lack of recovery from EAE. The frequency of CD138+ B cells in the cerebrospinal fluid (CSF) of human subjects with multiple sclerosis was negatively correlated with the frequency of PMN-MDSCs in the CSF. Thus PMN-MDSCs might selectively control the accumulation and cytokine secretion of B cells in the inflamed CNS.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Células Supressoras Mieloides/imunologia , Adolescente , Adulto , Animais , Sistema Nervoso Central/imunologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
6.
Nat Immunol ; 18(1): 74-85, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27893700

RESUMO

The cellular sources of interleukin 6 (IL-6) that are relevant for differentiation of the TH17 subset of helper T cells remain unclear. Here we used a novel strategy for the conditional deletion of distinct IL-6-producing cell types to show that dendritic cells (DCs) positive for the signaling regulator Sirpα were essential for the generation of pathogenic TH17 cells. Using their IL-6 receptor α-chain (IL-6Rα), Sirpα+ DCs trans-presented IL-6 to T cells during the process of cognate interaction. While ambient IL-6 was sufficient to suppress the induction of expression of the transcription factor Foxp3 in T cells, trans-presentation of IL-6 by DC-bound IL-6Rα (called 'IL-6 cluster signaling' here) was needed to prevent premature induction of interferon-γ (IFN-γ) expression in T cells and to generate pathogenic TH17 cells in vivo. Our findings should guide therapeutic approaches for the treatment of TH17-cell-mediated autoimmune diseases.


Assuntos
Sistema Nervoso Central/imunologia , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Subunidade alfa de Receptor de Interleucina-6/genética , Interleucina-6/metabolismo , Células Th17/imunologia , Animais , Autoimunidade , Diferenciação Celular , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
7.
J Virol ; 87(6): 3393-408, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23302880

RESUMO

JC polyomavirus (JCV) infection is highly prevalent and usually kept in a persistent state without clinical signs and symptoms. It is only during immunocompromise and especially impaired CD4(+) T cell function in the brain, as seen in AIDS patients or natalizumab-treated multiple sclerosis patients, that JCV may cause progressive multifocal leukoencephalopathy (PML), an often life-threatening brain disease. Since CD4(+) T cells likely play an important role in controlling JCV infection, we here describe the T cell response to JCV in a group of predominantly HLA-DR-heterozygotic healthy donors (HD) by using a series of overlapping 15-mer peptides spanning all JCV-encoded open reading frames. We identified immunodominant epitopes and compared T cell responses with anti-JCV VP1 antibody production and with the presence of urinary viral shedding. We observed positive JCV-specific T cell responses in 28.6% to 77.6%, humoral immune response in 42.6% to 89.4%, and urinary viral shedding in 36.4% to 45.5% of HD depending on the threshold. Four immunodominant peptides were mapped, and at least one immunogenic peptide per HLA-DRB1 allele was detected in DRB1*01(+), DRB1*07(+), DRB1*11(+), DRB1*13(+), DRB1*15(+), and DRB1*03(+) individuals. We show for the first time that JCV-specific T cell responses may be directed not only against JCV VP1 and large T antigen but also against all other JCV-encoded proteins. Heterozygotic DRB1*04:01(+) individuals showed very low T cell responses to JCV together with normal anti-VP1 antibody levels and no urinary viral shedding, indicating a dominant-negative effect of this allele on global JCV-directed T cell responses. Our data are potentially relevant for the development of vaccines against JCV.


Assuntos
Epitopos de Linfócito T/análise , Cadeias HLA-DRB1/imunologia , Vírus JC/imunologia , Proteoma/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Anticorpos Antivirais/sangue , Mapeamento de Epitopos , Feminino , Cadeias HLA-DRB1/genética , Humanos , Epitopos Imunodominantes/análise , Masculino , Pessoa de Meia-Idade , Urina/virologia , Eliminação de Partículas Virais
8.
Brain ; 134(Pt 9): 2687-702, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21908874

RESUMO

Progressive multi-focal leucoencephalopathy and progressive multi-focal leucoencephalopathy-immune reconstitution inflammatory syndrome are caused by infection of the central nervous system with the JC polyoma virus. Both are complications of monoclonal antibody therapy in multiple sclerosis and other autoimmune diseases. Progressive multi-focal leucoencephalopathy-immune reconstitution inflammatory syndrome can obscure the diagnosis of progressive multi-focal leucoencephalopathy and lead to severe clinical disability and possibly death. Different from progressive multi-focal leucoencephalopathy, in which demyelination results from oligodendrocyte lysis by JC virus in the absence of an immune response, tissue destruction in progressive multi-focal leucoencephalopathy-immune reconstitution inflammatory syndrome is caused by a vigorous immune response within the brain. The cells and mediators that are involved in progressive multi-focal leucoencephalopathy-immune reconstitution inflammatory syndrome are as yet poorly understood. We examined two patients with multiple sclerosis, who developed progressive multi-focal leucoencephalopathy and later progressive multi-focal leucoencephalopathy-immune reconstitution inflammatory syndrome under natalizumab therapy. Due to initially negative JC viral deoxyribonucleic acid testing in the cerebrospinal fluid, a diagnostic brain biopsy was performed in one patient. Histopathology revealed brain inflammation characterized by a prominent T cell infiltrate (CD4(+)> CD8(+) T cells), but also B/plasma cells and monocytes. Despite very low JC viral load, both patients showed high intrathecal anti-JC virus antibodies. Brain-infiltrating CD4(+) T cells were studied regarding antigen specificity and function. CD4(+) T cells were highly specific for peptides from several JC virus proteins, particularly the major capsid protein VP1. T cell phenotyping revealed CD4(+) Th1 and bifunctional Th1-2 cells. The latter secrete large amounts of interferon-γ and interleukin-4 explaining the strong brain inflammation, presence of plasma cells and secretion of intrathecal anti-VP1 antibodies. The functional phenotype of brain-infiltrating JC virus-specific CD4(+) T cells was confirmed and extended by examining brain-derived JC virus-specific CD4(+) T cell clones. Our data provide novel insight into the pathogenesis of progressive multi-focal leucoencephalopathy-immune reconstitution inflammatory syndrome and indicate that JC virus-specific CD4(+) T cells play an important role in both eliminating JC virus from the brain, but also in causing the massive inflammation with often fatal outcome.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Síndrome Inflamatória da Reconstituição Imune/imunologia , Síndrome Inflamatória da Reconstituição Imune/virologia , Vírus JC/imunologia , Leucoencefalopatia Multifocal Progressiva/imunologia , Adulto , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Encéfalo/citologia , Encéfalo/imunologia , Diagnóstico Diferencial , Humanos , Síndrome Inflamatória da Reconstituição Imune/tratamento farmacológico , Síndrome Inflamatória da Reconstituição Imune/patologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Leucoencefalopatia Multifocal Progressiva/patologia , Leucoencefalopatia Multifocal Progressiva/virologia , Masculino , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Natalizumab , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA