Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 269: 116308, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503166

RESUMO

Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC50 values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 µM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC50 values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC50 value of 23 µM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Subtilisina/metabolismo , Sequência de Aminoácidos , Plasmodium falciparum/metabolismo , Peptídeos , Malária Falciparum/parasitologia , Serina Proteases/metabolismo , Relação Estrutura-Atividade , Antimaláricos/farmacologia , Antimaláricos/química , Proteínas de Protozoários , Mamíferos/metabolismo
2.
Nat Commun ; 14(1): 4851, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563123

RESUMO

Actinobacteria possess unique ways to regulate the oxoglutarate metabolic node. Contrary to most organisms in which three enzymes compose the 2-oxoglutarate dehydrogenase complex (ODH), actinobacteria rely on a two-in-one protein (OdhA) in which both the oxidative decarboxylation and succinyl transferase steps are carried out by the same polypeptide. Here we describe high-resolution cryo-EM and crystallographic snapshots of representative enzymes from Mycobacterium smegmatis and Corynebacterium glutamicum, showing that OdhA is an 800-kDa homohexamer that assembles into a three-blade propeller shape. The obligate trimeric and dimeric states of the acyltransferase and dehydrogenase domains, respectively, are critical for maintaining the overall assembly, where both domains interact via subtle readjustments of their interfaces. Complexes obtained with substrate analogues, reaction products and allosteric regulators illustrate how these domains operate. Furthermore, we provide additional insights into the phosphorylation-dependent regulation of this enzymatic machinery by the signalling protein OdhI.


Assuntos
Corynebacterium glutamicum , Complexo Cetoglutarato Desidrogenase , Complexo Cetoglutarato Desidrogenase/metabolismo , Microscopia Crioeletrônica , Fosforilação , Corynebacterium glutamicum/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819376

RESUMO

α-oxoacid dehydrogenase complexes are large, tripartite enzymatic machineries carrying out key reactions in central metabolism. Extremely conserved across the tree of life, they have been, so far, all considered to be structured around a high-molecular weight hollow core, consisting of up to 60 subunits of the acyltransferase component. We provide here evidence that Actinobacteria break the rule by possessing an acetyltranferase component reduced to its minimally active, trimeric unit, characterized by a unique C-terminal helix bearing an actinobacterial specific insertion that precludes larger protein oligomerization. This particular feature, together with the presence of an odhA gene coding for both the decarboxylase and the acyltransferase domains on the same polypetide, is spread over Actinobacteria and reflects the association of PDH and ODH into a single physical complex. Considering the central role of the pyruvate and 2-oxoglutarate nodes in central metabolism, our findings pave the way to both therapeutic and metabolic engineering applications.


Assuntos
Actinobacteria/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Bactérias/metabolismo , Fenômenos Bioquímicos , Biologia Computacional , Cristalografia por Raios X , Cinética , Conformação Molecular , Mycobacterium tuberculosis/metabolismo , Plasmídeos/metabolismo , Ácido Pirúvico
4.
Nucleic Acids Res ; 47(7): 3795-3810, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30788511

RESUMO

Upon triggering by their inducer, signal transduction ATPases with numerous domains (STANDs), initially in monomeric resting forms, multimerize into large hubs that activate target macromolecules. This process requires conversion of the STAND conserved core (the NOD) from a closed form encasing an ADP molecule to an ATP-bound open form prone to multimerize. In the absence of inducer, autoinhibitory interactions maintain the NOD closed. In particular, in resting STAND proteins with an LRR- or WD40-type sensor domain, the latter establishes interactions with the NOD that are disrupted in the multimerization-competent forms. Here, we solved the first crystal structure of a STAND with a tetratricopeptide repeat sensor domain, PH0952 from Pyrococcus horikoshii, revealing analogous NOD-sensor contacts. We use this structural information to experimentally demonstrate that similar interactions also exist in a PH0952 homolog, the MalT STAND archetype, and actually contribute to the MalT autoinhibition in vitro and in vivo. We propose that STAND activation occurs by stepwise release of autoinhibitory contacts coupled to the unmasking of inducer-binding determinants. The MalT example suggests that STAND weak autoinhibitory interactions could assist the binding of inhibitory proteins by placing in register inhibitor recognition elements born by two domains.


Assuntos
Adenosina Trifosfatases/química , Conformação Proteica , Domínios Proteicos/genética , Repetições de Tetratricopeptídeos/genética , Adenosina Trifosfatases/genética , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína/genética , Transdução de Sinais/genética , Repetições WD40/genética
5.
Structure ; 27(4): 579-589.e5, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30744994

RESUMO

Despite sharing common features, previous studies have shown that gyrases from different species have been modified throughout evolution to modulate their properties. Here, we report two crystal structures of Mycobacterium tuberculosis DNA gyrase, an apo and AMPPNP-bound form at 2.6-Å and 3.3-Å resolution, respectively. These structures provide high-resolution structural data on the quaternary organization and interdomain connections of a gyrase (full-length GyrB-GyrA57)2 thus providing crucial inputs on this essential drug target. Together with small-angle X-ray scattering studies, they revealed an "extremely open" N-gate state, which persists even in the DNA-free gyrase-AMPPNP complex and an unexpected connection between the ATPase and cleavage core domains mediated by two Corynebacteriales-specific motifs, respectively the C-loop and DEEE-loop. We show that the C-loop participates in the stabilization of this open conformation, explaining why this gyrase has a lower ATPase activity. Our results image a conformational state which might be targeted for drug discovery.


Assuntos
Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Apoproteínas/química , Corynebacterium/química , DNA Girase/química , Mycobacterium tuberculosis/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Sequência de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Clonagem Molecular , Corynebacterium/enzimologia , Cristalografia por Raios X , DNA/química , DNA/metabolismo , DNA Girase/genética , DNA Girase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
6.
PLoS Pathog ; 13(5): e1006399, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28545104

RESUMO

Sensing and response to changes in nutrient availability are essential for the lifestyle of environmental and pathogenic bacteria. Serine/threonine protein kinase G (PknG) is required for virulence of the human pathogen Mycobacterium tuberculosis, and its putative substrate GarA regulates the tricarboxylic acid cycle in M. tuberculosis and other Actinobacteria by protein-protein binding. We sought to understand the stimuli that lead to phosphorylation of GarA, and the roles of this regulatory system in pathogenic and non-pathogenic bacteria. We discovered that M. tuberculosis lacking garA was severely attenuated in mice and macrophages and furthermore that GarA lacking phosphorylation sites failed to restore the growth of garA deficient M. tuberculosis in macrophages. Additionally we examined the impact of genetic disruption of pknG or garA upon protein phosphorylation, nutrient utilization and the intracellular metabolome. We found that phosphorylation of GarA requires PknG and depends on nutrient availability, with glutamate and aspartate being the main stimuli. Disruption of pknG or garA caused opposing effects on metabolism: a defect in glutamate catabolism or depletion of intracellular glutamate, respectively. Strikingly, disruption of the phosphorylation sites of GarA was sufficient to recapitulate defects caused by pknG deletion. The results suggest that GarA is a cellular target of PknG and the metabolomics data demonstrate that the function of this signaling system is in metabolic regulation. This function in amino acid homeostasis is conserved amongst the Actinobacteria and provides an example of the close relationship between metabolism and virulence.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Metabolômica , Mycobacterium tuberculosis , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Ácido Glutâmico/metabolismo , Homeostase , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Tuberculose/microbiologia , Virulência
7.
Cell Chem Biol ; 23(10): 1193-1205, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27693059

RESUMO

Allostery is a phenomenon observed in many proteins where binding of a macromolecular partner or a small-molecule ligand at one location leads to specific perturbations at a site not in direct contact with the region where the binding occurs. The list of proteins under allosteric regulation includes AGC protein kinases. AGC kinases have a conserved allosteric site, the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF) pocket, which regulates protein ATP-binding, activity, and interaction with substrates. In this study, we identify small molecules that bind to the ATP-binding site and affect the PIF pocket of AGC kinase family members, PDK1 and Aurora kinase. We describe the mechanistic details and show that although PDK1 and Aurora kinase inhibitors bind to the conserved ATP-binding site, they differentially modulate physiological interactions at the PIF-pocket site. Our work outlines a strategy for developing bidirectional small-molecule allosteric modulators of protein kinases and other signaling proteins.


Assuntos
Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Sítio Alostérico/efeitos dos fármacos , Aurora Quinases/antagonistas & inibidores , Aurora Quinases/química , Aurora Quinases/metabolismo , Sítios de Ligação/efeitos dos fármacos , Células HEK293 , Humanos , Indazóis/química , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/química , Piruvato Desidrogenase Quinase de Transferência de Acetil
8.
J Biol Chem ; 291(27): 13955-13963, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189944

RESUMO

Phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential glycosyltransferase that initiates the biosynthetic pathway of phosphatidyl-myo-inositol mannoside, lipomannan, and lipoarabinomannan, which are key glycolipids/lipoglycans of the mycobacterial cell envelope. PimA belongs to a large family of membrane-associated glycosyltransferases for which the understanding of the molecular mechanism and conformational changes that govern substrate/membrane recognition and catalysis remains a major challenge. Here, we determined that PimA preferentially binds to negatively charged phosphatidyl-myo-inositol substrate and non-substrate membrane model systems (small unilamellar vesicle) through its N-terminal domain, inducing an important structural reorganization of anionic phospholipids. By using a combination of single-point mutagenesis, circular dichroism, and a variety of fluorescence spectroscopy techniques, we determined that this interaction is mainly mediated by an amphipathic α-helix (α2), which undergoes a substantial conformational change and localizes in the vicinity of the negatively charged lipid headgroups and the very first carbon atoms of the acyl chains, at the PimA-phospholipid interface. Interestingly, a flexible region within the N-terminal domain, which undergoes ß-strand-to-α-helix and α-helix-to-ß-strand transitions during catalysis, interacts with anionic phospholipids; however, the effect is markedly less pronounced to that observed for the amphipathic α2, likely reflecting structural plasticity/variability. Altogether, we propose a model in which conformational transitions observed in PimA might reflect a molten globule state that confers to PimA, a higher affinity toward the dynamic and highly fluctuating lipid bilayer.


Assuntos
Proteínas de Bactérias/metabolismo , Manosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium smegmatis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dicroísmo Circular , Escherichia coli/genética , Manosiltransferases/química , Manosiltransferases/genética , Proteínas de Membrana/química , Modelos Moleculares , Fosfolipídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
9.
Chem Biol ; 22(7): 917-27, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26097035

RESUMO

To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target.


Assuntos
Antituberculosos/farmacologia , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/metabolismo , Tiofenos/farmacologia , Ativação Metabólica , Animais , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Células Hep G2 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Oxirredutases/química , Conformação Proteica , Tiofenos/química
10.
PLoS Biol ; 12(1): e1001776, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24492262

RESUMO

Histidine kinases (HKs) are dimeric receptors that participate in most adaptive responses to environmental changes in prokaryotes. Although it is well established that stimulus perception triggers autophosphorylation in many HKs, little is known on how the input signal propagates through the HAMP domain to control the transient interaction between the histidine-containing and ATP-binding domains during the catalytic reaction. Here we report crystal structures of the full cytoplasmic region of CpxA, a prototypical HK involved in Escherichia coli response to envelope stress. The structural ensemble, which includes the Michaelis complex, unveils HK activation as a highly dynamic process, in which HAMP modulates the segmental mobility of the central HK α-helices to promote a strong conformational and dynamical asymmetry that characterizes the kinase-active state. A mechanical model based on our structural and biochemical data provides insights into HAMP-mediated signal transduction, the autophosphorylation reaction mechanism, and the symmetry-dependent control of HK kinase/phosphatase functional states.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Modelos Moleculares , Proteínas Quinases/química , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Histidina/química , Histidina/metabolismo , Cinética , Movimento (Física) , Fosforilação , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Termodinâmica , Difração de Raios X
11.
Mol Microbiol ; 90(2): 356-66, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23962235

RESUMO

Alpha-ketoglutarate is a key metabolic intermediate at the crossroads of carbon and nitrogen metabolism, whose fate is tightly regulated. In mycobacteria the protein GarA regulates the tricarboxylic acid cycle and glutamate synthesis by direct binding and regulation of three enzymes that use α-ketoglutarate. GarA, in turn, is thought to be regulated via phosphorylation by protein kinase G and other kinases. We have investigated the requirement for GarA for metabolic regulation during growth in vitro and in macrophages. GarA was found to be essential to Mycobacterium tuberculosis, but dispensable in non-pathogenic Mycobacterium smegmatis. Disruption of garA caused a distinctive, nutrient-dependent phenotype, fitting with its proposed role in regulating glutamate metabolism. The data underline the importance of the TCA cycle and the balance with glutamate synthesis in M. tuberculosis and reveal vulnerability to disruption of these pathways.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genes Bacterianos , Ácidos Cetoglutáricos/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Regulação Bacteriana da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Macrófagos/microbiologia , Mutagênese Sítio-Dirigida , Mycobacterium smegmatis/metabolismo , Fenótipo , Fosforilação , Proteínas Recombinantes/metabolismo
12.
Free Radic Biol Med ; 65: 150-161, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23792274

RESUMO

PknG from Mycobacterium tuberculosis is a Ser/Thr protein kinase that regulates key metabolic processes within the bacterial cell as well as signaling pathways from the infected host cell. This multidomain protein has a conserved canonical kinase domain with N- and C-terminal flanking regions of unclear functional roles. The N-terminus harbors a rubredoxin-like domain (Rbx), a bacterial protein module characterized by an iron ion coordinated by four cysteine residues. Disruption of the Rbx-metal binding site by simultaneous mutations of all the key cysteine residues significantly impairs PknG activity. This encouraged us to evaluate the effect of a nitro-fatty acid (9- and 10-nitro-octadeca-9-cis-enoic acid; OA-NO2) on PknG activity. Fatty acid nitroalkenes are electrophilic species produced during inflammation and metabolism that react with nucleophilic residues of target proteins (i.e., Cys and His), modulating protein function and subcellular distribution in a reversible manner. Here, we show that OA-NO2 inhibits kinase activity by covalently adducting PknG remote from the catalytic domain. Mass spectrometry-based analysis established that cysteines located at Rbx are the specific targets of the nitroalkene. Cys-nitroalkylation is a Michael addition reaction typically reverted by thiols. However, the reversible OA-NO2-mediated nitroalkylation of the kinase results in an irreversible inhibition of PknG. Cys adduction by OA-NO2 induced iron release from the Rbx domain, revealing a new strategy for the specific inhibition of PknG. These results affirm the relevance of the Rbx domain as a target for PknG inhibition and support that electrophilic lipid reactions of Rbx-Cys may represent a new drug strategy for specific PknG inhibition.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Rubredoxinas/metabolismo , Alcenos/química , Alcenos/metabolismo , Domínio Catalítico/fisiologia , Dicroísmo Circular , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Mutagênese Sítio-Dirigida , Nitrocompostos/química , Nitrocompostos/metabolismo , Rubredoxinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Chem Biol ; 18(11): 1463-73, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118680

RESUMO

Protein kinases are key mediators of cellular signaling, and therefore, their activities are tightly controlled. AGC kinases are regulated by phosphorylation and by N- and C-terminal regions. Here, we studied the molecular mechanism of inhibition of atypical PKCζ and found that the inhibition by the N-terminal region cannot be explained by a simple pseudosubstrate inhibitory mechanism. Notably, we found that the C1 domain allosterically inhibits PKCζ activity and verified an allosteric communication between the PIF-pocket of atypical PKCs and the binding site of the C1 domain. Finally, we developed low-molecular-weight compounds that bind to the PIF-pocket and allosterically inhibit PKCζ activity. This work establishes a central role for the PIF-pocket on the regulation of PKCζ and allows us to envisage development of drugs targeting the PIF-pocket that can either activate or inhibit AGC kinases.


Assuntos
Proteína Quinase C/química , Bibliotecas de Moléculas Pequenas/química , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação , Biocatálise , Linhagem Celular Tumoral , Humanos , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia
14.
J Biol Chem ; 285(44): 33577-83, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20801880

RESUMO

Phosphatidyl-myo-inositol mannosides (PIMs) are unique glycolipids found in abundant quantities in the inner and outer membranes of the cell envelope of all Mycobacterium species. They are based on a phosphatidyl-myo-inositol lipid anchor carrying one to six mannose residues and up to four acyl chains. PIMs are considered not only essential structural components of the cell envelope but also the structural basis of the lipoglycans (lipomannan and lipoarabinomannan), all important molecules implicated in host-pathogen interactions in the course of tuberculosis and leprosy. Although the chemical structure of PIMs is now well established, knowledge of the enzymes and sequential events leading to their biosynthesis and regulation is still incomplete. Recent advances in the identification of key proteins involved in PIM biogenesis and the determination of the three-dimensional structures of the essential phosphatidyl-myo-inositol mannosyltransferase PimA and the lipoprotein LpqW have led to important insights into the molecular basis of this pathway.


Assuntos
Regulação Bacteriana da Expressão Gênica , Manosídeos/química , Mycobacterium/metabolismo , Fosfatidilinositóis/química , Proteínas de Bactérias/química , Membrana Celular/metabolismo , Glicerofosfolipídeos/química , Lipídeos/química , Lipopolissacarídeos/química , Manosiltransferases/química , Modelos Biológicos , Mycobacterium tuberculosis/metabolismo , Conformação Proteica
15.
Proc Natl Acad Sci U S A ; 106(38): 16185-90, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805278

RESUMO

Temperature sensing is essential for the survival of living cells. A major challenge is to understand how a biological thermometer processes thermal information to optimize cellular functions. Using structural and biochemical approaches, we show that the thermosensitive histidine kinase, DesK, from Bacillus subtilis is cold-activated through specific interhelical rearrangements in its central four-helix bundle domain. As revealed by the crystal structures of DesK in different functional states, the plasticity of this helical domain influences the catalytic activities of the protein, either by modifying the mobility of the ATP-binding domains for autokinase activity or by modulating binding of the cognate response regulator to sustain the phosphotransferase and phosphatase activities. The structural and biochemical data suggest a model in which the transmembrane sensor domain of DesK promotes these structural changes through conformational signals transmitted by the membrane-connecting two-helical coiled-coil, ultimately controlling the alternation between output autokinase and phosphatase activities. The structural comparison of the different DesK variants indicates that incoming signals can take the form of helix rotations and asymmetric helical bends similar to those reported for other sensing systems, suggesting that a similar switching mechanism could be operational in a wide range of sensor histidine kinases.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas Quinases/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Catálise , Cromatografia em Gel , Cristalização , Cristalografia por Raios X , Histidina Quinase , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Temperatura
16.
J Mol Biol ; 383(5): 1058-68, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18822295

RESUMO

The DNA-binding protein Sac7d was previously modified to bind with high affinity to the N domain of the outer membrane secretin PulD from the bacterium Klebsiella oxytoca. Here, we show that binding of the Sac7d derivatives (affitins) to PulD is sensitive to conformational changes caused by denaturant and by the zwitterionic detergent Zwittergent 3-14 routinely used to extract secretins from outer membranes. This sensitivity to the conformational state of PulD allowed us to use the affitins as probes for the native structure of PulD and to devise protocols for examining in vitro synthesized protein in nonionic detergent and for the affinity purification of native PulD using affitins as ligands. When fused to periplasmic PhoA, three affitins inhibited PulD multimerization in vivo and caused loss of function. In two cases, this was likely to be due to dimerization of the affitin by the bound PhoA, as the effect was absent when the affitins were fused to monomeric MalE. In the third case, the MalE and PhoA moieties probably interfered sterically with PulD protomer interactions and, thereby, inhibited multimerization. None of the affitins tested interacted with PulD at sites of protomer interaction or blocked the secretin channel through which exoproteins cross the outer membrane in the Type II secretion pathway of which PulD is a key component.


Assuntos
Proteínas de Bactérias/química , Klebsiella oxytoca/química , Sondas Moleculares/metabolismo , Secretina/química , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Cromatografia de Afinidade , Dicroísmo Circular , Proteínas de Ligação a DNA/metabolismo , Detergentes/farmacologia , Epitopos/química , Microscopia Eletrônica , Octoxinol/farmacologia , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Secretina/metabolismo , Solubilidade/efeitos dos fármacos , Ureia/farmacologia
17.
Proc Natl Acad Sci U S A ; 104(46): 17983-8, 2007 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17984049

RESUMO

We engineered a class of proteins that binds selected polypeptides with high specificity and affinity. Use of the protein scaffold of Sac7d, belonging to a protein family that binds various ligands, overcomes limitations inherent in the use of antibodies as intracellular inhibitors: it lacks disulfide bridges, is small and stable, and can be produced in large amounts. An in vitro combinatorial/selection approach generated specific, high-affinity (up to 140 pM) binders against bacterial outer membrane secretin PulD. When exported to the Escherichia coli periplasm, they inhibited PulD oligomerization, thereby blocking the type II secretion pathway of which PulD is part. Thus, high-affinity inhibitors of protein function can be derived from Sac7d and can be exported to, and function in, a cell compartment other than that in which they are produced.


Assuntos
Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Ligação a DNA/química , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Modelos Moleculares , Reação em Cadeia da Polimerase , Conformação Proteica , Radioimunoensaio , Ressonância de Plasmônio de Superfície
18.
Protein Sci ; 16(9): 1896-904, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17660248

RESUMO

Mycobacterium leprae protein ML2640c belongs to a large family of conserved hypothetical proteins predominantly found in mycobacteria, some of them predicted as putative S-adenosylmethionine (AdoMet)-dependent methyltransferases (MTase). As part of a Structural Genomics initiative on conserved hypothetical proteins in pathogenic mycobacteria, we have determined the structure of ML2640c in two distinct crystal forms. As expected, ML2640c has a typical MTase core domain and binds the methyl donor substrate AdoMet in a manner consistent with other known members of this structural family. The putative acceptor substrate-binding site of ML2640c is a large internal cavity, mostly lined by aromatic and aliphatic side-chain residues, suggesting that a lipid-like molecule might be targeted for catalysis. A flap segment (residues 222-256), which isolates the binding site from the bulk solvent and is highly mobile in the crystal structures, could serve as a gateway to allow substrate entry and product release. The multiple sequence alignment of ML2640c-like proteins revealed that the central alpha/beta core and the AdoMet-binding site are very well conserved within the family. However, the amino acid positions defining the binding site for the acceptor substrate display a higher variability, suggestive of distinct acceptor substrate specificities. The ML2640c crystal structures offer the first structural glimpses at this important family of mycobacterial proteins and lend strong support to their functional assignment as AdoMet-dependent methyltransferases.


Assuntos
Metiltransferases/química , Mycobacteriaceae/enzimologia , Mycobacterium leprae/enzimologia , S-Adenosilmetionina/química , Sequência de Aminoácidos , Sítios de Ligação , Biologia Computacional/métodos , Cristalografia por Raios X , Bases de Dados de Proteínas , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mycobacteriaceae/genética , Mycobacterium leprae/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato
19.
FEBS Lett ; 580(13): 3018-22, 2006 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-16674948

RESUMO

Mycobacterium tuberculosis PknB is an essential receptor-like protein kinase involved in cell growth control. Here, we demonstrate that mitoxantrone, an anthraquinone derivative used in cancer therapy, is a PknB inhibitor capable of preventing mycobacterial growth. The structure of the complex reveals that mitoxantrone partially occupies the adenine-binding pocket in PknB, providing a framework for the design of compounds with potential therapeutic applications. PknB crystallizes as a 'back-to-back' homodimer identical to those observed in other structures of PknB in complex with ATP analogs. This organization resembles that of the RNA-dependent protein kinase PKR, suggesting a mechanism for kinase activation in mycobacteria.


Assuntos
Mitoxantrona/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Trifosfato de Adenosina/antagonistas & inibidores , Dimerização , Mitoxantrona/farmacologia , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo
20.
Protein Sci ; 15(6): 1489-93, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16672241

RESUMO

The crystal structure of Mycobacterium tuberculosis adenylate kinase (MtAK) in complex with two ADP molecules and Mg2+ has been determined at 1.9 A resolution. Comparison with the solution structure of the enzyme, obtained in the absence of substrates, shows significant conformational changes of the LID and NMP-binding domains upon substrate binding. The ternary complex represents the state of the enzyme at the start of the backward reaction (ATP synthesis). The structure is consistent with a direct nucleophilic attack of a terminal oxygen from the acceptor ADP molecule on the beta-phosphate from the donor substrate, and both the geometry and the distribution of positive charge in the active site support the hypothesis of an associative mechanism for phosphoryl transfer.


Assuntos
Difosfato de Adenosina/metabolismo , Adenilato Quinase/química , Adenilato Quinase/metabolismo , Magnésio/metabolismo , Mycobacterium tuberculosis/enzimologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA