Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 22(6): 717-725, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070927

RESUMO

Selpercatinib (LOXO292) and pralsetinib (BLU667) are RET protein tyrosine kinase inhibitors (TKIs) recently approved for treating RET-altered cancers. However, RET mutations that confer selpercatinib/pralsetinib resistance have been identified, necessitating development of next-generation RET TKIs. While acquired RET G810C/R/S/V mutations were reported in selpercatinib-treated patients, it was unclear whether all of these and other potential G810 mutants are resistant to selpercatinib and pralsetinib. Here, we profiled selpercatinib and pralsetinib on all six possible G810 mutants derived from single nucleotide substitution and developed novel alkynyl nicotinamide-based RET TKIs to inhibit selpercatinib/pralsetinib-resistant RET G810 mutants. Surprisingly, the G810V mutant found in a clinical study was not resistant to selpercatinib or pralsetinib. Besides G810C/R/S, G810D also conferred selpercatinib/pralsetinib resistance. Alkynyl nicotinamide compounds such as HSN608, HSL476, and HSL468 have better drug-like properties than alkynyl benzamides. Six of these compounds inhibited all six G810 solvent-front mutants and the V804M gatekeeper mutant with IC50 < 50 nmol/L in cell culture. Oral administration of HSN608 at a well-tolerated dose (30 mg/kg) gave plasma level > 30x the IC50s of inhibiting all G810 mutants in cell culture. In cell-derived xenograft tumors driven by KIF5B-RET (G810C) that contains the most frequently observed solvent-front mutant in selpercatinib-treated patients, HSN608, HSL476, and HSL468 significantly suppressed and caused regression of the selpercatinib-resistant tumors. This study clarifies the sensitivities of different RET solvent-front mutants to selpercatinib and pralsetinib and identifies novel alkylnyl nicotinamide-based RET TKIs for inhibiting selpercatinib/pralsetinib-resistant G810 mutants.


Assuntos
Benzamidas , Técnicas de Cultura de Células , Humanos , Administração Oral , Benzamidas/farmacologia , Niacinamida/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret
2.
Front Cell Infect Microbiol ; 12: 876898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923804

RESUMO

Staphylococcus aureus osteomyelitis remains a very challenging condition; recent clinical studies have shown infection control rates following surgery/antibiotics to be ~60%. Additionally, prior efforts to produce an effective S. aureus vaccine have failed, in part due to lack of knowledge of protective immunity. Previously, we demonstrated that anti-glucosaminidase (Gmd) antibodies are protective in animal models but found that only 6.7% of culture-confirmed S. aureus osteomyelitis patients in the AO Clinical Priority Program (AO-CPP) Registry had basal serum levels (>10 ng/ml) of anti-Gmd at the time of surgery (baseline). We identified a small subset of patients with high levels of anti-Gmd antibodies and adverse outcomes following surgery, not explained by Ig class switching to non-functional isotypes. Here, we aimed to test the hypothesis that clinical cure following surgery is associated with anti-Gmd neutralizing antibodies in serum. Therefore, we first optimized an in vitro assay that quantifies recombinant Gmd lysis of the M. luteus cell wall and used it to demonstrate the 50% neutralizing concentration (NC50) of a humanized anti-Gmd mAb (TPH-101) to be ~15.6 µg/ml. We also demonstrated that human serum deficient in anti-Gmd antibodies can be complemented by TPH-101 to achieve the same dose-dependent Gmd neutralizing activity as purified TPH-101. Finally, we assessed the anti-Gmd physical titer and neutralizing activity in sera from 11 patients in the AO-CPP Registry, who were characterized into four groups post-hoc. Group 1 patients (n=3) had high anti-Gmd physical and neutralizing titers at baseline that decreased with clinical cure of the infection over time. Group 2 patients (n=3) had undetectable anti-Gmd antibodies throughout the study and adverse outcomes. Group 3 (n=3) had high titers +/- neutralizing anti-Gmd at baseline with adverse outcomes. Group 4 (n=2) had low titers of non-neutralizing anti-Gmd at baseline with delayed high titers and adverse outcomes. Collectively, these findings demonstrate that both neutralizing and non-neutralizing anti-Gmd antibodies exist in S. aureus osteomyelitis patients and that screening for these antibodies could have a value for identifying patients in need of passive immunization prior to surgery. Future prospective studies to test the prognostic value of anti-Gmd antibodies to assess the potential of passive immunization with TPH-101 are warranted.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Animais , Anticorpos Neutralizantes , Hexosaminidases , Humanos , Projetos Piloto , Estudos Prospectivos , Staphylococcus aureus
3.
PLoS Negl Trop Dis ; 14(11): e0008730, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33206639

RESUMO

The development of vaccines against flaviviruses, including Zika virus (ZIKV) and dengue virus (DENV), continues to be a major challenge, hindered by the lack of efficient and reliable methods for screening neutralizing activity of sera or antibodies. To address this need, we previously developed a plasmid-based, replication-incompetent DENV reporter virus particle (RVP) production system as an efficient and safe alternative to the Plaque Reduction Neutralization Test (PRNT). As part of the response to the 2015-2016 ZIKV outbreak, we developed pseudo-infectious ZIKV RVPs by modifying our DENV RVP system. The use of ZIKV RVPs as critical reagents in human clinical trials requires their further validation using stability and reproducibility metrics for large-scale applications. In the current study, we validated ZIKV RVPs using infectivity, neutralization, and enhancement assays with monoclonal antibodies (MAbs) and human ZIKV-positive patient serum. ZIKV RVPs are antigenically equivalent to live virus based on binding ELISA and neutralization results and are nonreplicating based on the results of live virus replication assays. We demonstrate reproducible neutralization titer data (NT50 values) across different RVP production lots, volumes, time frames, and laboratories. We also show RVP stability across experimentally relevant time intervals and temperatures. Our results demonstrate that ZIKV RVPs provide a safe, high-throughput, and reproducible reagent for large-scale, long-term studies of neutralizing antibodies and sera, which can facilitate large-scale screening and epidemiological studies to help expedite ZIKV vaccine development.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Ensaios de Triagem em Larga Escala/métodos , Testes de Neutralização/métodos , Infecção por Zika virus/diagnóstico , Zika virus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Genes Reporter/genética , Células HEK293 , Humanos , Programas de Rastreamento/métodos , Células Vero , Vacinas Virais/imunologia , Zika virus/genética , Infecção por Zika virus/prevenção & controle
4.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32766723

RESUMO

The Nck-associated protein 1-like (NCKAP1L) gene, alternatively called hematopoietic protein 1 (HEM-1), encodes a hematopoietic lineage-specific regulator of the actin cytoskeleton. Nckap1l-deficient mice have anomalies in lymphocyte development, phagocytosis, and neutrophil migration. Here we report, for the first time, NCKAP1L deficiency cases in humans. In two unrelated patients of Middle Eastern origin, recessive mutations in NCKAP1L abolishing protein expression led to immunodeficiency, lymphoproliferation, and hyperinflammation with features of hemophagocytic lymphohistiocytosis. Immunophenotyping showed an inverted CD4/CD8 ratio with a major shift of both CD4+ and CD8+ cells toward memory compartments, in line with combined RNA-seq/proteomics analyses revealing a T cell exhaustion signature. Consistent with the core function of NCKAP1L in the reorganization of the actin cytoskeleton, patients' T cells displayed impaired early activation, immune synapse morphology, and leading edge formation. Moreover, knockdown of nckap1l in zebrafish led to defects in neutrophil migration. Hence, NCKAP1L mutations lead to broad immune dysregulation in humans, which could be classified within actinopathies.


Assuntos
Síndromes de Imunodeficiência/complicações , Inflamação/complicações , Transtornos Linfoproliferativos/complicações , Proteínas de Membrana/metabolismo , Actinas/metabolismo , Animais , Degranulação Celular , Proliferação de Células , Criança , Citotoxicidade Imunológica , Família , Feminino , Homozigoto , Humanos , Síndromes de Imunodeficiência/imunologia , Sinapses Imunológicas/metabolismo , Lactente , Inflamação/imunologia , Inflamação/patologia , Ativação Linfocitária/imunologia , Transtornos Linfoproliferativos/imunologia , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Mutação/genética , Linhagem , Fenótipo , Síndrome , Peixe-Zebra
5.
PLoS Pathog ; 15(11): e1008061, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31697791

RESUMO

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes persistent arthritis in a subset of human patients. We report the isolation and functional characterization of monoclonal antibodies (mAbs) from two patients infected with CHIKV in the Dominican Republic. Single B cell sorting yielded a panel of 46 human mAbs of diverse germline lineages that targeted epitopes within the E1 or E2 glycoproteins. MAbs that recognized either E1 or E2 proteins exhibited neutralizing activity. Viral escape mutations localized the binding epitopes for two E1 mAbs to sites within domain I or the linker between domains I and III; and for two E2 mAbs between the ß-connector region and the B-domain. Two of the E2-specific mAbs conferred protection in vivo in a stringent lethal challenge mouse model of CHIKV infection, whereas the E1 mAbs did not. These results provide insight into human antibody response to CHIKV and identify candidate mAbs for therapeutic intervention.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Epitopos/imunologia , Glicoproteínas/imunologia , Proteínas do Envelope Viral/imunologia , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Febre de Chikungunya/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR
6.
Viruses ; 11(5)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052499

RESUMO

Ebola virus (EBOV) disease can result in a range of symptoms anywhere from virtually asymptomatic to severe hemorrhagic fever during acute infection. Additionally, spans of asymptomatic persistence in recovering survivors is possible, during which transmission of the virus may occur. In acute infection, substantial cytokine storm and bystander lymphocyte apoptosis take place, resulting in uncontrolled, systemic inflammation in affected individuals. Recently, studies have demonstrated the presence of EBOV proteins VP40, glycoprotein (GP), and nucleoprotein (NP) packaged into extracellular vesicles (EVs) during infection. EVs containing EBOV proteins have been shown to induce apoptosis in recipient immune cells, as well as contain pro-inflammatory cytokines. In this manuscript, we review the current field of knowledge on EBOV EVs including the mechanisms of their biogenesis, their cargo and their effects in recipient cells. Furthermore, we discuss some of the effects that may be induced by EBOV EVs that have not yet been characterized and highlight the remaining questions and future directions.


Assuntos
Ebolavirus/patogenicidade , Vesículas Extracelulares/metabolismo , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Animais , Efeito Espectador , Ciclo Celular , Citocinas/metabolismo , Ebolavirus/imunologia , Exossomos/imunologia , Exossomos/metabolismo , Vesículas Extracelulares/imunologia , Doença pelo Vírus Ebola/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune , Nucleoproteínas/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas da Matriz Viral/metabolismo
7.
Nat Struct Mol Biol ; 26(3): 204-212, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30833785

RESUMO

The structural features that govern broad-spectrum activity of broadly neutralizing anti-ebolavirus antibodies (Abs) outside of the internal fusion loop epitope are currently unknown. Here we describe the structure of a broadly neutralizing human monoclonal Ab (mAb), ADI-15946, which was identified in a human survivor of the 2013-2016 outbreak. The crystal structure of ADI-15946 in complex with cleaved Ebola virus glycoprotein (EBOV GPCL) reveals that binding of the mAb structurally mimics the conserved interaction between the EBOV GP core and its glycan cap ß17-ß18 loop to inhibit infection. Both endosomal proteolysis of EBOV GP and binding of mAb FVM09 displace this loop, thereby increasing exposure of ADI-15946's conserved epitope and enhancing neutralization. Our work also mapped the paratope of ADI-15946, thereby explaining reduced activity against Sudan virus, which enabled rational, structure-guided engineering to enhance binding and neutralization of Sudan virus while retaining the parental activity against EBOV and Bundibugyo virus.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Proteínas Virais de Fusão/imunologia , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Cristalografia por Raios X , Humanos , Estrutura Terciária de Proteína , Sobreviventes
8.
J Infect Dis ; 218(suppl_5): S365-S387, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30169850

RESUMO

Background: Ebola virus (EBOV) mainly targets myeloid cells; however, extensive death of T cells is often observed in lethal infections. We have previously shown that EBOV VP40 in exosomes causes recipient immune cell death. Methods: Using VP40-producing clones, we analyzed donor cell cycle, extracellular vesicle (EV) biogenesis, and recipient immune cell death. Transcription of cyclin D1 and nuclear localization of VP40 were examined via kinase and chromatin immunoprecipitation assays. Extracellular vesicle contents were characterized by mass spectrometry, cytokine array, and western blot. Biosafety level-4 facilities were used for wild-type Ebola virus infection studies. Results: VP40 EVs induced apoptosis in recipient T cells and monocytes. VP40 clones were accelerated in growth due to cyclin D1 upregulation, and nuclear VP40 was found bound to the cyclin D1 promoter. Accelerated cell cycling was related to EV biogenesis, resulting in fewer but larger EVs. VP40 EV contents were enriched in ribonucleic acid-binding proteins and cytokines (interleukin-15, transforming growth factor-ß1, and interferon-γ). Finally, EBOV-infected cell and animal EVs contained VP40, nucleoprotein, and glycoprotein. Conclusions: Nuclear VP40 upregulates cyclin D1 levels, resulting in dysregulated cell cycle and EV biogenesis. Packaging of cytokines and EBOV proteins into EVs from infected cells may be responsible for the decimation of immune cells during EBOV pathogenesis.


Assuntos
Ciclo Celular/fisiologia , Ebolavirus/metabolismo , Vesículas Extracelulares/metabolismo , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Nucleoproteínas/metabolismo , Proteínas do Core Viral/metabolismo , Apoptose/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/virologia , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Regiões Promotoras Genéticas/fisiologia , Ligação Proteica/fisiologia , Células U937 , Regulação para Cima/fisiologia , Proteínas da Matriz Viral/metabolismo
9.
Nat Commun ; 9(1): 3934, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258051

RESUMO

The severity of the 2014-2016 ebolavirus outbreak in West Africa expedited clinical development of therapeutics and vaccines though the countermeasures on hand were largely monospecific and lacked efficacy against other ebolavirus species that previously emerged. Recent studies indicate that ebolavirus glycoprotein (GP) fusion loops are targets for cross-protective antibodies. Here we report the 3.72 Å resolution crystal structure of one such cross-protective antibody, CA45, bound to the ectodomain of Ebola virus (EBOV) GP. The CA45 epitope spans multiple faces of the fusion loop stem, across both GP1 and GP2 subunits, with ~68% of residues identical across > 99.5% of known ebolavirus isolates. Extensive antibody interactions within a pan-ebolavirus small-molecule inhibitor binding cavity on GP define this cavity as a novel site of immune vulnerability. The structure elucidates broad ebolavirus neutralization through a highly conserved epitope on GP and further enables rational design and development of broadly protective vaccines and therapeutics.


Assuntos
Anticorpos Neutralizantes/química , Ebolavirus/imunologia , Proteínas do Envelope Viral/imunologia , Sítios de Ligação de Anticorpos
10.
J Infect Dis ; 218(suppl_5): S553-S564, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29939318

RESUMO

Background: Several vaccine platforms have been successfully evaluated for prevention of Ebola virus (EBOV) disease (EVD) in nonhuman primates and humans. Despite remarkable efficacy by multiple vaccines, the immunological correlates of protection against EVD are incompletely understood. Methods: We systematically evaluated the antibody response to various EBOV proteins in 79 nonhuman primates vaccinated with various EBOV vaccine platforms. We evaluated the serum immunoglobulin (Ig)G titers against EBOV glycoprotein (GP), the ability of the vaccine-induced antibodies to bind GP at acidic pH or to displace ZMapp, and virus neutralization titers. The correlation of these outcomes with survival from EVD was evaluated by appropriate statistical methods. Results: Irrespective of the vaccine platform, protection from EVD strongly correlated with anti-GP IgG titers. The GP-directed antibody levels required for protection in animals vaccinated with virus-like particles (VLPs) lacking nucleoprotein (NP) was significantly higher than animals immunized with NP-containing VLPs or adenovirus-expressed GP, platforms that induce strong T-cell responses. Furthermore, protective immune responses correlated with anti-GP antibody binding strength at acidic pH, neutralization of GP-expressing pseudovirions, and the ability to displace ZMapp components from GP. Conclusions: These findings suggest key quantitative and qualitative attributes of antibody response to EVD vaccines as potential correlates of protection.


Assuntos
Anticorpos Antivirais/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Vacinação , Animais , Anticorpos Antivirais/sangue , Vacinas contra Ebola/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/mortalidade , Concentração de Íons de Hidrogênio , Macaca fascicularis , Nucleoproteínas/imunologia , Vírion/imunologia
11.
Science ; 354(6310): 350-354, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27608667

RESUMO

There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor-binding site are coupled to a mAb against a conserved, surface-exposed GP epitope. Bispecific antibodies, but not parent mAbs, neutralized all known ebolaviruses by coopting viral particles themselves for endosomal delivery and conferred postexposure protection against multiple ebolaviruses in mice. Such "Trojan horse" bispecific antibodies have potential as broad antifilovirus immunotherapeutics.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas de Transporte/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Glicoproteínas de Membrana/imunologia , Receptores Virais/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Sítios de Ligação/imunologia , Linhagem Celular Tumoral , Endossomos/virologia , Doença pelo Vírus Ebola/terapia , Humanos , Imunoterapia/métodos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Proteína C1 de Niemann-Pick , Internalização do Vírus
12.
Trends Microbiol ; 24(9): 684-686, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27338027

RESUMO

The ebolavirus immunotherapeutics field has replaced previous perceptions of antibody inadequacy with a new abundance of monoclonals exhibiting post exposure efficacy. Now the questions are: what epitopes to target, what immunological mechanisms to seek, whether species-specific or broadly reactive antibodies are best, and whether a cocktail or monotherapy should be used.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/terapia , Imunoterapia/métodos , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Camundongos
13.
J Biol Chem ; 287(30): 25203-15, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22645125

RESUMO

Staphylococcal enterotoxin B (SEB) is a potent toxin that can cause toxic shock syndrome and act as a lethal and incapacitating agent when used as a bioweapon. There are currently no vaccines or immunotherapeutics available against this toxin. Using phage display technology, human antigen-binding fragments (Fabs) were selected against SEB, and proteins were produced in Escherichia coli cells and characterized for their binding affinity and their toxin neutralizing activity in vitro and in vivo. Highly protective Fabs were converted into full-length IgGs and produced in mammalian cells. Additionally, the production of anti-SEB antibodies was explored in the Nicotiana benthamiana plant expression system. Affinity maturation was performed to produce optimized lead anti-SEB antibody candidates with subnanomolar affinities. IgGs produced in N. benthamiana showed characteristics comparable with those of counterparts produced in mammalian cells. IgGs were tested for their therapeutic efficacy in the mouse toxic shock model using different challenge doses of SEB and a treatment with 200 µg of IgGs 1 h after SEB challenge. The lead candidates displayed full protection from lethal challenge over a wide range of SEB challenge doses. Furthermore, mice that were treated with anti-SEB IgG had significantly lower IFNγ and IL-2 levels in serum compared with mock-treated mice. In summary, these anti-SEB monoclonal antibodies represent excellent therapeutic candidates for further preclinical and clinical development.


Assuntos
Anticorpos Monoclonais/farmacologia , Enterotoxinas/antagonistas & inibidores , Fragmentos Fab das Imunoglobulinas/farmacologia , Choque Séptico/terapia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/genética , Enterotoxinas/imunologia , Enterotoxinas/toxicidade , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Choque Séptico/induzido quimicamente , Choque Séptico/genética , Choque Séptico/imunologia , Fatores de Tempo , Nicotiana/genética
14.
Virology ; 401(1): 18-28, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20202662

RESUMO

Ebola virus (EBOV) infects several cell types and while viral entry is known to be pH-dependent, the exact entry pathway(s) remains unknown. To gain insights into EBOV entry, the role of several inhibitors of clathrin-mediated endocytosis in blocking infection mediated by HIV pseudotyped with the EBOV envelope glycoprotein (EbGP) was examined. Wild type HIV and envelope-minus HIV pseudotyped with Vesicular Stomatitis Virus glycoprotein (VSVg) were used as controls to assess cell viability after inhibiting clathrin pathway. Inhibition of clathrin pathway using dominant-negative Eps15, siRNA-mediated knockdown of clathrin heavy chain, chlorpromazine and sucrose blocked EbGP pseudotyped HIV infection. Also, both chlorpromazine and Bafilomycin A1 inhibited entry of infectious EBOV. Sensitivity of EbGP pseudotyped HIV as well as infectious EBOV to inhibitors of clathrin suggests that EBOV uses clathrin-mediated endocytosis as an entry pathway. Furthermore, since chlorpromazine inhibits EBOV infection, novel therapeutic modalities could be designed based on this lead compound.


Assuntos
Clatrina/metabolismo , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Internalização do Vírus , Animais , Linhagem Celular , Clorpromazina/farmacologia , Humanos , Proteínas do Envelope Viral/metabolismo
15.
Antimicrob Agents Chemother ; 54(5): 2152-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20211898

RESUMO

There exists an urgent need to develop licensed drugs and vaccines for the treatment or prevention of filovirus infections. FGI-103 is a low-molecular-weight compound that was discovered through an in vitro screening assay utilizing a variant of Zaire ebolavirus (ZEBOV) that expresses green fluorescent protein. In vitro analyses demonstrated that FGI-103 also exhibits antiviral activity against wild-type ZEBOV and Sudan ebolavirus, as well as Marburgvirus (MARV) strains Ci67 and Ravn. In vivo administration of FGI-103 as a single intraperitoneal dose of 10 mg/kg delivered 24 h after infection is sufficient to completely protect mice against a lethal challenge with a mouse-adapted strain of either ZEBOV or MARV-Ravn. In a murine model of ZEBOV infection, delivery of FGI-103 reduces viremia and the viral burden in kidney, liver, and spleen tissues and is associated with subdued and delayed proinflammatory cytokine responses and tissue pathology. Taken together, these results identify a promising antiviral therapeutic candidate for the treatment of filovirus infections.


Assuntos
Amidinas/farmacologia , Antivirais/farmacologia , Benzofuranos/farmacologia , Infecções por Filoviridae/tratamento farmacológico , Filoviridae/efeitos dos fármacos , Amidinas/química , Animais , Antivirais/química , Benzofuranos/química , Chlorocebus aethiops , Citocinas/metabolismo , Ebolavirus/efeitos dos fármacos , Ebolavirus/genética , Feminino , Filoviridae/genética , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/patologia , Proteínas de Fluorescência Verde/genética , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/patologia , Células Hep G2 , Humanos , Rim/citologia , Fígado/patologia , Fígado/virologia , Masculino , Doença do Vírus de Marburg/tratamento farmacológico , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/patologia , Marburgvirus/efeitos dos fármacos , Marburgvirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Bibliotecas de Moléculas Pequenas , Células Vero
16.
Antiviral Res ; 83(3): 245-51, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19523489

RESUMO

We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge. Cell-based assays also identified inhibitory activity against divergent virus families, which supports a hypothesis that FGI-106 interferes with a common pathway utilized by different viruses. These findings suggest FGI-106 may provide an opportunity for targeting viral diseases.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Ebolavirus/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Quimioprevenção , Vírus da Dengue/efeitos dos fármacos , Feminino , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Ensaio de Placa Viral
17.
Chembiochem ; 9(12): 2000-4, 2008 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-18655064

RESUMO

HIV-1 viral assembly requires a direct interaction between a Pro-Thr-Ala-Pro ("PTAP") motif in the viral protein Gag-p6 and the cellular endosomal sorting factor Tsg101. In an effort to develop competitive inhibitors of this interaction, an SAR study was conducted based on the application of post solid-phase oxime formation involving the sequential insertion of aminooxy-containing residues within a nonamer parent peptide followed by reaction with libraries of aldehydes. Approximately 15-20-fold enhancement in binding affinity was achieved by this approach.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Oximas/química , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Complexos Endossomais de Distribuição Requeridos para Transporte , Ligantes , Peptídeos/química , Peptídeos/isolamento & purificação , Relação Estrutura-Atividade
18.
J Infect Dis ; 196 Suppl 2: S264-70, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17940959

RESUMO

Budding of Ebola virus (EBOV) particles from the plasma membrane of infected cells requires viral and host proteins. EBOV virus matrix protein VP40 recruits TSG101, an ESCRT-1 (host cell endosomal sorting complex required for transport-1) complex protein in the vacuolar protein sorting (vps) pathway, to the plasma membrane during budding. Involvement of other vps proteins in EBOV budding has not been established. Therefore, we used VP40 deletion analysis, virus-like particle-release assays, and confocal microscopy to investigate the potential role of ESCRT-1 proteins VPS4, VPS28, and VPS37B in EBOV budding. We found that VP40 could redirect each protein from endosomes to the cell surface independently of TSG101 interaction. A lack of VPS4 adenosine triphosphatase activity reduced budding by up to 80%. Inhibition of VPS4 gene expression by use of phosphorodiamidite morpholino antisense oligonucleotides protected mice from lethal EBOV infection. These data show that EBOV can use vps proteins independently of TSG101 for budding and reveal VPS4 as a potential target for filovirus therapeutics.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Ebolavirus/fisiologia , Fatores de Transcrição/fisiologia , Vacúolos/fisiologia , Proteínas Virais/fisiologia , Linhagem Celular , Membrana Celular/fisiologia , Membrana Celular/virologia , Primers do DNA , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Rim , Microscopia Confocal , Mutagênese , Oligodesoxirribonucleotídeos , Transporte Proteico/fisiologia
19.
J Infect Dis ; 196 Suppl 2: S430-7, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17940980

RESUMO

BACKGROUND: Currently, there are no licensed vaccines or therapeutics for the prevention or treatment of infection by the highly lethal filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), in humans. We previously had demonstrated the protective efficacy of virus-like particle (VLP)-based vaccines against EBOV and MARV infection in rodents. METHODS: To determine the efficacy of vaccination with Ebola VLPs (eVLPs) in nonhuman primates, we vaccinated cynomolgus macaques with eVLPs containing EBOV glycoprotein (GP), nucleoprotein (NP), and VP40 matrix protein and challenged the macaques with 1000 pfu of EBOV. RESULTS: Serum samples from the eVLP-vaccinated nonhuman primates demonstrated EBOV-specific antibody titers, as measured by enzyme-linked immunosorbent assay, complement-mediated lysis assay, and antibody-dependent cell-mediated cytotoxicity assay. CD44+ T cells from eVLP-vaccinated macaques but not from a naive macaque responded with vigorous production of tumor necrosis factor- alpha after EBOV-peptide stimulation. All 5 eVLP-vaccinated monkeys survived challenge without clinical or laboratory signs of EBOV infection, whereas the control animal died of infection. CONCLUSION: On the basis of safety and efficacy, eVLPs represent a promising filovirus vaccine for use in humans.


Assuntos
Vacinas contra Ebola/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Modelos Animais de Doenças , Doença pelo Vírus Ebola/sangue , Humanos , Rim , Macaca fascicularis
20.
Cell Microbiol ; 9(4): 962-76, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17381429

RESUMO

Understanding how protective innate immune responses are generated is crucial to defeating highly lethal emerging pathogens. Accumulating evidence suggests that potent innate immune responses are tightly linked to control of Ebola and Marburg filoviral infections. Here, we report that unlike authentic or inactivated Ebola and Marburg, filovirus-derived virus-like particles directly activated human natural killer (NK) cells in vitro, evidenced by pro-inflammatory cytokine production and enhanced cytolysis of permissive target cells. Further, we observed perforin- and CD95L-mediated cytolysis of filovirus-infected human dendritic cells (DCs), primary targets of filovirus infection, by autologous NK cells. Gene expression knock-down studies directly linked NK cell lysis of infected DCs to upregulation of the natural cytotoxicity receptor, NKp30. These results are the first to propose a role for NK cells in the clearance of infected DCs and the potential involvement of NKp30-mediated cytolysis in control of viral infection in vivo. Further elucidation of the biology of NK cell activation, specifically natural cytotoxicity receptors like NKp30 and NKp46, promises to aid our understanding of microbial pathology.


Assuntos
Células Dendríticas/metabolismo , Filoviridae/crescimento & desenvolvimento , Receptores Imunológicos/fisiologia , Morte Celular/genética , Morte Celular/fisiologia , Células Cultivadas , Citocinas/metabolismo , Citotoxicidade Imunológica/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Proteína Ligante Fas/metabolismo , Citometria de Fluxo , Humanos , Células K562 , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Glicoproteínas de Membrana/metabolismo , Mutação , Receptor 1 Desencadeador da Citotoxicidade Natural , Receptor 2 Desencadeador da Citotoxicidade Natural , Receptor 3 Desencadeador da Citotoxicidade Natural , Perforina , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Vírion/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA