RESUMO
BACKGROUND: We investigated the role of A2B-adenosine receptor in regulating immunosuppressive metabolic stress in the tumor microenvironment. Novel A2B-adenosine receptor antagonist PBF-1129 was tested for antitumor activity in mice and evaluated for safety and immunologic efficacy in a phase I clinical trial of patients with non-small cell lung cancer. METHODS: The antitumor efficacy of A2B-adenosine receptor antagonists and their impact on the metabolic and immune tumor microenvironment were evaluated in lung, melanoma, colon, breast, and epidermal growth factor receptor-inducible transgenic cancer models. Employing electron paramagnetic resonance, we assessed changes in tumor microenvironment metabolic parameters, including pO2, pH, and inorganic phosphate, during tumor growth and evaluated the immunologic effects of PBF-1129, including its pharmacokinetics, safety, and toxicity, in patients with non-small cell lung cancer. RESULTS: Levels of metabolic stress correlated with tumor growth, metastasis, and immunosuppression. Tumor interstitial inorganic phosphate emerged as a correlative and cumulative measure of tumor microenvironment stress and immunosuppression. A2B-adenosine receptor inhibition alleviated metabolic stress, downregulated expression of adenosine-generating ectonucleotidases, increased expression of adenosine deaminase, decreased tumor growth and metastasis, increased interferon γ production, and enhanced the efficacy of antitumor therapies following combination regimens in animal models (anti-programmed cell death 1 protein vs anti-programmed cell death 1 protein plus PBF-1129 treatment hazard ratio = 11.74 [95% confidence interval = 3.35 to 41.13], n = 10, P < .001, 2-sided F test). In patients with non-small cell lung cancer, PBF-1129 was well tolerated, with no dose-limiting toxicities; demonstrated pharmacologic efficacy; modulated the adenosine generation system; and improved antitumor immunity. CONCLUSIONS: Data identify A2B-adenosine receptor as a valuable therapeutic target to modify metabolic and immune tumor microenvironment to reduce immunosuppression, enhance the efficacy of immunotherapies, and support clinical application of PBF-1129 in combination therapies.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptor A2B de Adenosina/metabolismo , Microambiente Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Terapia de Imunossupressão , Adenosina/metabolismo , Fosfatos , Linhagem Celular TumoralRESUMO
Conventional PD-L1 immunohistochemical tissue biopsies only predict 20%-40% of non-small cell lung cancer (NSCLC) patients that will respond positively to anti-PD-1/PD-L1 immunotherapy. Herein, we present an immunogold biochip to quantify single extracellular vesicular RNA and protein (Au SERP) as a non-invasive alternative. With only 20 µl of purified serum, PD-1/PD-L1 proteins on the surface of extracellular vesicles (EVs) and EV PD-1/PD-L1 messenger RNA (mRNA) cargo were detected at a single-vesicle resolution and exceeded the sensitivities of their bulk-analysis conventional counterparts, ELISA and qRT-PCR, by 1000 times. By testing a cohort of 27 non-responding and 27 responding NSCLC patients, Au SERP indicated that the single-EV mRNA biomarkers surpass the single-EV protein biomarkers in predicting patient responses to immunotherapy. Dual single-EV PD-1/PD-L1 mRNA detection differentiated responders from non-responders with an accuracy of 72.2% and achieved an NSCLC diagnosis accuracy of 93.2%, suggesting the potential for Au SERP to provide enhanced immunotherapy predictions and cancer diagnoses within the clinical setting.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Antígeno B7-H1/genética , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/genética , Vesículas Extracelulares/metabolismo , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/genética , RNA/uso terapêutico , RNA Mensageiro/metabolismoRESUMO
Non-small cell lung cancer (NSCLC) is a heterogeneous disease with genetic and environmental parameters that influence cell metabolism. Because of the complex interplay of environmental factors within the tumor microenvironment (TME) and the profound impact of these factors on the metabolic activities of tumor and immune cells, there is an emerging interest to advance the understanding of these diverse metabolic phenotypes in the TME. High levels of adenosine are characteristic of the TME, and adenosine can have a significant impact on both tumor cell growth and the immune response. Consistent with this, we showed in NSCLC data from TCGA that high expression of the A2BR leads to worse outcome and that expression of A2BR may be different for different mutation backgrounds. We then investigated the metabolic reprogramming of tumor cells and immune cells (T and dendritic cells) by adenosine. We used A2AR and A2BR antagonism or agonism as well as receptor knockout animals to explore whether these treatments altered specific immune compartments or conferred specific therapeutic vulnerabilities. Using the seahorse assay, we found that an A2BR antagonist modulates oxidative stress homeostasis in NSCLC cell lines. In addition, we found distinct metabolic roles of A2AR and A2BR receptors in T cell activation and dendritic cell maturation. These data suggest potential mechanisms and therapeutic benefits of A2 receptor antagonist therapy in NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenosina , Animais , Receptor A2A de Adenosina , Receptor A2B de Adenosina , Microambiente TumoralRESUMO
Small cell lung cancer (SCLC) is an extremely aggressive neuroendocrine tumor, accounting for approximated 13% of all lung cancer cases. SCLC is characterized by rapid growth and early metastasis. Despite marked improvements in the number and efficacy of targeted, therapeutic options and overall survival rates in SCLC have remained nearly unchanged for almost three decades. The lack of significant progress can be attributed to our poor understanding of the biology of SCLC. Although immune checkpoint inhibitors were recently approved as front-line therapies for SCLC, we still need to better understand the mechanisms responsible for the selective vulnerability of some SCLCs to these inhibitors. Recent work utilizing sequencing data and single cell analyses identified four distinct subsets of SCLC, based on the expression levels of the transcription factors ASCL1, NEUROD1, POU2F3 and YAP1. Each subset was found to have its own distinct biology and therapeutic vulnerabilities. However, these subsets appear to be phenotypically unstable, representing snapshots in the gradual evolution of a tumor that exhibits significant plasticity. Tumor evolution, a product of this plasticity, results in the emergence of significant intratumoral heterogeneity which plays an important role in multiple aspects of SCLC development and progression, including cell survival and proliferation, metastasis and angiogenesis. The recent paradigm shifting discoveries in the biology of SCLC are now beginning to inform the design of new therapeutic strategies for the management of this intractable disease.
Assuntos
Neoplasias Pulmonares , Tumores Neuroendócrinos , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Fatores de TranscriçãoRESUMO
INTRODUCTION: This study investigates the immune profile of the primary lung tumors and the corresponding brain metastasis from patients with NSCLC using multiplex fluorescence immunohistochemistry. METHODS: The study evaluated 34 patients who underwent autopsy or surgical resection for brain metastasis and autopsy, surgical resection, or core biopsy for primary lung cancer. We compared the densities of various immune cells in the primary tumors and the brain metastases by multiplex fluorescence immunohistochemical analysis. RESULTS: The density of CD4-positive (CD4+) T-cells, CD8-positive T-cells, and CD4+ Foxp3-positive T-cells were statistically higher in both tumor and stromal areas in primary lung cancer specimens when compared with brain metastases samples (p < 0.0001). Only CD204-positive cells were statistically higher in the tumor areas of the brain metastases (p = 0.0118). Tumor-infiltrating lymphocytes associated with brain metastases positively correlated with overall survival, but primary lung tumor-infiltrating lymphocytes did not. The density of CD4+ and CD4+ Foxp3-positive T-cells in brain metastases with radiation was statistically higher in the carcinoma and stromal areas compared with those without radiation (p = 0.0343, p = 0.0173). CONCLUSIONS: Our findings that CD204-positive cells were higher in brain metastases may have broader implications for treatment as these macrophages may be immunosuppressive and make the immune environment less reactive. Furthermore, the finding that the density of CD4+ T-cells was higher in cancer and stroma areas of brain metastases after radiotherapy supports the addition of immunotherapy to radiation therapy in the treatment of brain metastases in NSCLC.
RESUMO
Small cell lung cancer (SCLC) remains a deadly form of cancer, with a 5-year survival rate of less than 10 percent, necessitating novel therapies. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein that is emerging as a therapeutic target and is co-expressed with BCL2 in multiple tumor types due to microRNA coregulation. We hypothesize that ROR1-targeted therapy is effective in small cell lung cancer and synergizes with therapeutic BCL2 inhibition. Tissue microarrays (TMAs) and formalin-fixed paraffin-embedded (FFPE) SCLC patient samples were utilized to determine the prevalence of ROR1 and BCL2 expression in SCLC. Eight SCLC-derived cell lines were used to determine the antitumor activity of a small molecule ROR1 inhibitor (KAN0441571C) alone and in combination with the BCL2 inhibitor venetoclax. The Chou-Talalay method was utilized to determine synergy with the drug combination. ROR1 and BCL2 protein expression was identified in 93% (52/56) and 86% (48/56) of SCLC patient samples, respectively. Similarly, ROR1 and BCL2 were shown by qRT-PCR to have elevated expression in 79% (22/28) and 100% (28/28) of SCLC patient samples, respectively. KAN0441571C displayed efficacy in 8 SCLC cell lines, with an IC50 of 500 nM or less. Synergy as defined by a combination index of <1 via the Chou-Talalay method between KAN0441571C and venetoclax was demonstrated in 8 SCLC cell lines. We have shown that ROR1 inhibition is synergistic with BCL2 inhibition in SCLC models and shows promise as a novel therapeutic target in SCLC.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/antagonistas & inibidores , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Sulfonamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/biossíntese , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Sulfonamidas/administração & dosagem , Análise de SobrevidaRESUMO
STK11 (liver kinase B1, LKB1) is the fourth most frequently mutated gene in lung adenocarcinoma, with loss of function observed in up to 30% of all cases. Our previous work identified a 16-gene signature for LKB1 loss of function through mutational and nonmutational mechanisms. In this study, we applied this genetic signature to The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples and discovered a novel association between LKB1 loss and widespread DNA demethylation. LKB1-deficient tumors showed depletion of S-adenosyl-methionine (SAM-e), which is the primary substrate for DNMT1 activity. Lower methylation following LKB1 loss involved repetitive elements (RE) and altered RE transcription, as well as decreased sensitivity to azacytidine. Demethylated CpGs were enriched for FOXA family consensus binding sites, and nuclear expression, localization, and turnover of FOXA was dependent upon LKB1. Overall, these findings demonstrate that a large number of lung adenocarcinomas exhibit global hypomethylation driven by LKB1 loss, which has implications for both epigenetic therapy and immunotherapy in these cancers. SIGNIFICANCE: Lung adenocarcinomas with LKB1 loss demonstrate global genomic hypomethylation associated with depletion of SAM-e, reduced expression of DNMT1, and increased transcription of repetitive elements.
Assuntos
Quinases Proteína-Quinases Ativadas por AMP/fisiologia , Adenocarcinoma/genética , Metilação de DNA , Neoplasias Pulmonares/genética , S-Adenosilmetionina/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/genética , Adenocarcinoma/metabolismo , Linhagem Celular , Sobrevivência Celular , Análise por Conglomerados , Biologia Computacional , Ilhas de CpG , Bases de Dados Genéticas , Epigênese Genética , Genes ras , Humanos , Neoplasias Pulmonares/metabolismo , Metionina , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas p21(ras)/genética , Sequências Repetitivas de Ácido NucleicoRESUMO
BACKGROUND: We have verified a mass spectrometry (MS)-based targeted proteomics signature for the detection of malignant pleural mesothelioma (MPM) from the blood. METHODS: A seven-peptide biomarker MPM signature by targeted proteomics in serum was identified in a previous independent study. Here, we have verified the predictive accuracy of a reduced version of that signature, now composed of six-peptide biomarkers. We have applied liquid chromatography-selected reaction monitoring (LC-SRM), also known as multiple-reaction monitoring (MRM), for the investigation of 402 serum samples from 213 patients with MPM and 189 cancer-free asbestos-exposed donors from the United States, Australia, and Europe. RESULTS: Each of the biomarkers composing the signature was independently informative, with no apparent functional or physical relation to each other. The multiplexing possibility offered by MS proteomics allowed their integration into a single signature with a higher discriminating capacity than that of the single biomarkers alone. The strategy allowed in this way to increase their potential utility for clinical decisions. The signature discriminated patients with MPM and asbestos-exposed donors with AUC of 0.738. For early-stage MPM, AUC was 0.765. This signature was also prognostic, and Kaplan-Meier analysis showed a significant difference between high- and low-risk groups with an HR of 1.659 (95% CI, 1.075-2.562; P = 0.021). CONCLUSIONS: Targeted proteomics allowed the development of a multianalyte signature with diagnostic and prognostic potential for MPM from the blood. IMPACT: The proteomic signature represents an additional diagnostic approach for informing clinical decisions for patients at risk for MPM.
Assuntos
Espectrometria de Massas/métodos , Mesotelioma Maligno/genética , Neoplasias Pleurais/genética , Proteômica/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
INTRODUCTION: Anti-programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) antibody therapy is a standard treatment for advanced NSCLC, and PD-L1 immunohistochemistry is used as a predictive biomarker for therapeutic response. However, because not all patients with NSCLC with high PD-L1 respond, and some patients with low PD-L1 expression exhibit durable benefit, more accurate predictive biomarkers are needed. Circulating microRNA (miRNA) and miRNA packaged in extracellular vesicles (EVs) are believed to play a role in intercellular communication among immune cells and between immune cells and tumor cells and may represent a good source of mechanism-related biomarkers. METHODS: Pretreatment plasma of patients with advanced NSCLC treated with single-agent anti-PD-1 or anti-PD-L1 antibody was used in this study. Plasma EVs were isolated using size-exclusion chromatography. Whole plasma and EV-containing RNAs were extracted. The miRNA profile was analyzed with a next-generation sequencing platform. RESULTS: Samples from 14 responders (patients who exhibited partial response or stable disease ≥6 mo) and 15 nonresponders (patients who exhibited progressive disease as per Response Evaluation Criteria in Solid Tumors) were analyzed. In total, 32 miRNAs (p = 0.0030-0.0495) from whole plasma and seven EV-associated miRNAs (p = 0.041-0.0457) exhibited significant concentration differences between responders and nonresponders. The results of some of these circulating miRNAs were validated in a separate cohort with eight responders and 13 nonresponders. The tumor PD-L1 level was also assessed using immunohistochemistry for patients involved in both cohorts. CONCLUSIONS: Specific circulating miRNAs in whole plasma and plasma EVs are differentially expressed between responders and nonresponders and have potential as predictive biomarkers for anti-PD-1/PD-L1 treatment response.
Assuntos
MicroRNA Circulante , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Idoso , Idoso de 80 Anos ou mais , Antígeno B7-H1 , Biomarcadores , Biomarcadores Tumorais/genética , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1RESUMO
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths in the Western world. Despite progress made with targeted therapies and immune checkpoint inhibitors, the vast majority of patients have to undergo chemotherapy with platinum-based drugs. To increase efficacy and reduce potential side effects, a more comprehensive understanding of the mechanisms of the DNA damage response (DDR) is required. We have shown that overexpressby live cell imaging (Incuyion of the scaffold protein RAN binding protein 9 (RANBP9) is pervasive in NSCLC. More importantly, patients with higher levels of RANBP9 exhibit a worse outcome from treatment with platinum-based drugs. Mechanistically, RANBP9 exists as a target and an enabler of the ataxia telangiectasia mutated (ATM) kinase signaling. Indeed, the depletion of RANBP9 in NSCLC cells abates ATM activation and its downstream targets such as pby live cell imaging (Incuy53 signaling. RANBP9 knockout cells are more sensitive than controls to the inhibition of the ataxia and telangiectasia-related (ATR) kinase but not to ATM inhibition. The absence of RANBP9 renders cells more sensitive to drugs inhibiting the Poly(ADP-ribose)-Polymerase (PARP) resulting in a "BRCAness-like" phenotype. In summary, as a result of increased sensitivity to DNA damaging drugs conferred by its ablation in vitro and in vivo, RANBP9 may be considered as a potential target for the treatment of NSCLC. This article aims to report the results from past and ongoing investigations focused on the role of RANBP9 in the response to DNA damage, particularly in the context of NSCLC. This review concludes with future directions and speculative remarks which will need to be addressed in the coming years.
RESUMO
PURPOSE: Naturally occurring primary canine lung cancers share clinicopathologic features with human lung cancers in never-smokers, but the genetic underpinnings of canine lung cancer are unknown. We have charted the genomic landscape of canine lung cancer and performed functional characterization of novel, recurrent HER2 (ERBB2) mutations occurring in canine pulmonary adenocarcinoma (cPAC). EXPERIMENTAL DESIGN: We performed multiplatform genomic sequencing of 88 primary canine lung tumors or cell lines. Additionally, in cPAC cell lines, we performed functional characterization of HER2 signaling and evaluated mutation-dependent HER2 inhibitor drug dose-response. RESULTS: We discovered somatic, coding HER2 point mutations in 38% of cPACs (28/74), but none in adenosquamous (cPASC, 0/11) or squamous cell (cPSCC, 0/3) carcinomas. The majority (93%) of HER2 mutations were hotspot V659E transmembrane domain (TMD) mutations comparable to activating mutations at this same site in human cancer. Other HER2 mutations were located in the extracellular domain and TMD. HER2 V659E was detected in the plasma of 33% (2/6) of dogs with localized HER2 V659E tumors. HER2 V659E cPAC cell lines displayed constitutive phosphorylation of AKT and significantly higher sensitivity to the HER2 inhibitors lapatinib and neratinib relative to HER2-wild-type cell lines (IC50 < 200 nmol/L in HER2 V659E vs. IC50 > 2,500 nmol/L in HER2 WT). CONCLUSIONS: This study creates a foundation for molecular understanding of and drug development for canine lung cancer. These data also establish molecular contexts for comparative studies in dogs and humans of low mutation burden, never-smoker lung cancer, and mutant HER2 function and inhibition.
Assuntos
Adenocarcinoma de Pulmão/veterinária , Doenças do Cão/genética , Neoplasias Pulmonares/veterinária , Mutação , Receptor ErbB-2/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Doenças do Cão/tratamento farmacológico , Doenças do Cão/patologia , Cães , Feminino , Lapatinib/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Transdução de Sinais , Células Tumorais CultivadasRESUMO
INTRODUCTION: Liver kinase B1 (LKB1), also called serine/threonine kinase 11 (STK11), is a tumor suppressor that functions as master regulator of cell growth, metabolism, survival, and polarity. Approximately 30% to 35% of patients with NSCLC possess inactivated liver kinase B1 gene (LKB1), and these patients respond poorly to anti-programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) immunotherapy. Therefore, novel therapies targeting NSCLC with LKB1 loss are needed. METHODS: We used a new in silico signaling analysis method to identify the potential therapeutic targets and reposition drugs by integrating gene expression data with the Kyoto Encyclopedia of Genes and Genomes signaling pathways. LKB1 wild-type and LKB1-deficient NSCLC cell lines, including knockout clones generated by clustered regularly interspaced short pallindromic repeats-Cas9, were treated with inhibitors of mechanistic target of rapamycin kinase (mTOR) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and a dual inhibitor. RESULTS: In silico experiments showed that inhibition of both mTOR and PI3K can be synergistically effective in LKB1-deficient NSCLC. In vitro and in vivo experiments showed the synergistic effect of mTOR inhibition and PI3K inhibition in LKB1-mutant NSCLC cell lines. The sensitivity to dual inhibition of mTOR and PI3K is higher in LKB1-mutant cell lines than in wild-type cell lines. A higher compensatory increase in Akt phosphorylation after rapamycin treatment of LKB1-deficient cells than after rapamycin treatment of LKB1 wild-type cells is responsible for the synergistic effect of mTOR and PI3K inhibition. Dual inhibition of mTOR and PI3K resulted in a greater decrease in protein expression of cell cycle-regulating proteins in LKB1 knockout cells than in LKB1 wild-type cells. CONCLUSION: Dual molecular targeted therapy for mTOR and PI3K may be a promising therapeutic strategy in the specific population of patients with lung cancer with LKB1 loss.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Quinases Proteína-Quinases Ativadas por AMP , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
INTRODUCTION: Notch receptor family dysregulation can be tumor promoting or suppressing depending on cellular context. Our studies shed light on the mechanistic differences that are responsible for NOTCH1's opposing roles in lung adenocarcinoma and lung squamous cell carcinoma. METHODS: We integrated transcriptional patient-derived datasets with gene co-expression analyses to elucidate mechanisms behind NOTCH1 function in subsets of NSCLC. Differential co-expression was examined using hierarchical clustering and principal component analysis. Enrichment analysis was used to examine pathways associated with the underlying transcriptional networks. These pathways were validated in vitro and in vivo. Endogenously epitope-tagged NOTCH1 was used to identify novel interacting proteins. RESULTS: NOTCH1 co-expressed genes in lung adenocarcinoma and squamous carcinoma were distinct and associated with either angiogenesis and immune system pathways or cell cycle control and mitosis pathways, respectively. Tissue culture and xenograft studies of lung adenocarcinoma and lung squamous models with NOTCH1 knockdown showed growth differences and opposing effects on these pathways. Differential NOTCH1 interacting proteins were identified as potential mediators of these differences. CONCLUSIONS: Recognition of the opposing role of NOTCH1 in lung cancer, downstream pathways, and interacting proteins in each context may help direct the development of rational NOTCH1 pathway-dependent targeted therapies for specific tumor subsets of NSCLC.
Assuntos
Adenocarcinoma/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Receptor Notch1/genética , Transdução de Sinais , Células A549 , Adenocarcinoma/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células/genética , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imunidade/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Mutação , Transplante de Neoplasias , Neovascularização Patológica/genética , Receptor Notch1/metabolismo , Análise de Sequência de RNARESUMO
EGFR tyrosine kinase inhibitors cause dramatic responses in EGFR-mutant lung cancer, but resistance universally develops. The involvement of ß-catenin in EGFR TKI resistance has been previously reported, however, the precise mechanism by which ß-catenin activation contributes to EGFR TKI resistance is not clear. Here, we show that EGFR inhibition results in the activation of ß-catenin signaling in a Notch3-dependent manner, which facilitates the survival of a subset of cells that we call "adaptive persisters". We previously reported that EGFR-TKI treatment rapidly activates Notch3, and here we describe the physical association of Notch3 with ß-catenin, leading to increased stability and activation of ß-catenin. We demonstrate that the combination of EGFR-TKI and a ß-catenin inhibitor inhibits the development of these adaptive persisters, decreases tumor burden, improves recurrence free survival, and overall survival in xenograft models. These results supports combined EGFR-TKI and ß-catenin inhibition in patients with EGFR mutant lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Receptor Notch3/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Inibidor 1 de Ativador de Plasminogênio/sangue , Estabilidade Proteica/efeitos dos fármacos , Fatores de Transcrição/metabolismo , beta Catenina/antagonistas & inibidoresRESUMO
Although limited by severe side effects and development of resistance, platinum-based therapies still represent the most common first-line treatment for non-small cell lung cancer (NSCLC). However, a crucial need in the clinical management of NSCLC is represented by the identification of cases sensitive to DNA damage response (DDR)-targeting drugs, such as cisplatin or PARP inhibitors. Here, we provide a molecular rationale for the stratification of NSCLC patients potentially benefitting from platinum compounds based on the expression levels of RANBP9, a recently identified player of the cellular DDR. RANBP9 was found overexpressed by immunohistochemistry (IHC) in NSCLC compared to normal adjacent tissues (NATs) (n = 147). Moreover, a retrospective analysis of 132 platinum-treated patients from the multi-centric TAILOR trial showed that RANBP9 overexpression levels are associated with clinical response to platinum compounds [Progression Free Survival Hazard Ratio (RANBP9 high vs low) 1.73, 95% CI 1.15-2.59, p = 0.0084; Overall Survival HR (RANBP9 high vs low) 1.99, 95% CI 1.27-3.11, p = 0.003]. Accordingly, RANBP9 KO cells showed higher sensitivity to cisplatin in comparison with WT controls both in vitro and in vivo models. NSCLC RANBP9 KO cells were also more sensitive than control cells to the PARP inhibitor olaparib alone and in combination with cisplatin, due to defective ATM-dependent and hyper-activated PARP-dependent DDR. The current investigation paves the way to prospective studies to assess the clinical value of RANBP9 protein levels as prognostic and predictive biomarker of response to DDR-targeting drugs, leading to the development of new tools for the management of NSCLC patients.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas do Citoesqueleto/metabolismo , Dano ao DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Pulmonares/patologia , Proteínas Nucleares/metabolismo , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
INTRODUCTION: Despite apparently complete surgical resection, approximately half of resected early-stage lung cancer patients relapse and die of their disease. Adjuvant chemotherapy reduces this risk by only 5% to 8%. Thus, there is a need for better identifying who benefits from adjuvant therapy, the drivers of relapse, and novel targets in this setting. METHODS: RNA sequencing and liquid chromatography/liquid chromatography-mass spectrometry proteomics data were generated from 51 surgically resected non-small cell lung tumors with known recurrence status. RESULTS: We present a rationale and framework for the incorporation of high-content RNA and protein measurements into integrative biomarkers and show the potential of this approach for predicting risk of recurrence in a group of lung adenocarcinomas. In addition, we characterize the relationship between mRNA and protein measurements in lung adenocarcinoma and show that it is outcome specific. CONCLUSIONS: Our results suggest that mRNA and protein data possess independent biological and clinical importance, which can be leveraged to create higher-powered expression biomarkers.
Assuntos
Adenocarcinoma de Pulmão/cirurgia , Neoplasias Pulmonares/cirurgia , Proteogenômica/métodos , Adenocarcinoma de Pulmão/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , MasculinoRESUMO
Non-small cell lung cancer (NSCLC) can be identified by precise molecular subsets based on genomic alterations that drive tumorigenesis and include mutations in EGFR, KRAS, and various ALK fusions. However, despite effective treatments for EGFR and ALK, promising therapeutics have not been developed for patients with KRAS mutations. It has been reported that one way the RAS-ERK pathway contributes to tumorigenesis is by affecting stability and localization of FOXO3a protein, an important regulator of cell death and the cell cycle. This is through regulation of apoptotic proteins BIM and FASL and cell-cycle regulators p21Cip1 and p27Kip1 We now show that an HDAC inhibitor affects the expression and localization of FOXO proteins and wanted to determine whether the combination of a MEK inhibitor with an HDAC inhibitor would increase the sensitivity of NSCLC with KRAS mutation. Combined treatment with a MEK inhibitor and an HDAC inhibitor showed synergistic effects on cell metabolic activity of RAS-mutated lung cancer cells through activation of FOXOs, with a subsequent increase in BIM and cell-cycle inhibitors. Moreover, in a mouse xenograft model, the combination of belinostat and trametinib significantly decreases tumor formation through FOXOs by increasing BIM and the cell-cycle inhibitors p21Cip1 and p27Kip1 These results demonstrate that control of FOXOs localization and expression is critical in RAS-driven lung cancer cells, suggesting that the dual molecular-targeted therapy for MEK and HDACs may be promising as novel therapeutic strategy in NSCLC with specific populations of RAS mutations. Mol Cancer Ther; 17(1); 17-25. ©2017 AACR.
Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias Pulmonares/patologia , MutaçãoRESUMO
LKB1 is a commonly mutated tumor suppressor in non-small cell lung cancer that exerts complex effects on signal transduction and transcriptional regulation. To better understand the downstream impact of loss of functional LKB1, we developed a transcriptional fingerprint assay representing this phenotype. This assay was predictive of LKB1 functional loss in cell lines and clinical specimens, even those without detected sequence alterations in the gene. In silico screening of drug sensitivity data identified putative LKB1-selective drug candidates, revealing novel associations not apparent from analysis of LKB1 mutations alone. Among the candidates, MEK inhibitors showed robust association with signature expression in both training and testing datasets independent of RAS/RAF mutations. This susceptibility phenotype is directly altered by RNA interference-mediated LKB1 knockdown or by LKB1 re-expression into mutant cell lines and is readily observed in vivo using a xenograft model. MEK sensitivity is dependent on LKB1-induced changes in AKT and FOXO3 activation, consistent with genomic and proteomic analyses of LKB1-deficient lung adenocarcinomas. Our findings implicate the MEK pathway as a potential therapeutic target for LKB1-deficient cancers and define a practical NanoString biomarker to identify functional LKB1 loss. Cancer Res; 77(1); 153-63. ©2016 AACR.
Assuntos
Adenocarcinoma/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , MAP Quinase Quinase Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transcriptoma/genética , Quinases Proteína-Quinases Ativadas por AMP , Adenocarcinoma de Pulmão , Animais , Benzimidazóis/farmacologia , Biomarcadores Tumorais/genética , Feminino , Xenoenxertos , Humanos , Immunoblotting , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologiaRESUMO
INTRODUCTION: Alternative predictive end points for overall survival (OS), such as tumor response and progression-free survival (PFS), are useful in the early detection of drug efficacy; however, they have not been fully investigated in patients with advanced NSCLC treated with anti-programmed death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) antibodies. METHODS: In a systematic review of the reported prospective clinical trials, data for response rate, median PFS, and median OS were extracted from 12 arms in 10 reported clinical trials using anti-PD-1/PD-L1 antibody, and their correlation was investigated. In a retrospective analysis at our institution, OS was compared according to tumor response on 5- to 9-week computed tomography scans and status of being progression-free at 8, 16, and 24 weeks by landmark analysis in 71 patients with advanced NSCLC treated with anti-PD-1/PD-L1 antibodies between 2013 and 2015. RESULTS: In a systematic review, moderate correlations between median OS and median PFS (p = 0.120, r = 0.473) and between median OS and response rate (p = 0.141, r = 0.452) were identified using the Spearman correlation coefficient, although these correlations were not statistically significant. In a retrospective analysis of patients treated at our institution, disease control (partial response [PR]/stable disease versus progressive disease/not evaluable), and progression-free status at 8, 16, and 24 weeks significantly predicted OS (Cox proportional hazards model, PR/stable disease versus progressive disease/not evaluable, p = 0.0104, HR = 3.041; 8-week progression-free yes versus no, p = 0.0183, HR = 2.684; 16-week progression-free yes versus no, p = 0.0036, HR = 4.009; and 24-week progression-free yes versus no, p = 0.0002, HR = 12.726). CONCLUSIONS: Both disease control (PR plus stable disease status) and landmark progression-free survival were correlated with OS, with the longer interval landmark PFS being the best predictor of survival in patients with NSCLC treated with anti-PD-1/PD-L1 antibodies.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno B7-H1/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do TratamentoRESUMO
BACKGROUND: Fusion proteins have unique oncogenic properties and their identification can be useful either as diagnostic or therapeutic targets. Next generation sequencing data have previously shown a fusion gene formed between Rad51C and ATXN7 genes in the MCF7 breast cancer cell line. However, the existence of this fusion gene in colorectal patient tumor tissues is largely still unknown. METHODS: We evaluated for the presence of Rad51C-ATXN7 fusion gene in colorectal tumors and cells by RT-PCR, PCR, Topo TA cloning, Real time PCR, immunoprecipitation and immunoblotting techniques. RESULTS: We identified two forms of fusion mRNAs between Rad51C and ATXN7 in the colorectal tumors, including a Variant 1 (fusion transcript between Rad51C exons 1-7 and ATXN7 exons 6-13), and a Variant 2 (between Rad51C exons 1-6 and ATXN7 exons 6-13). In silico analysis showed that the Variant 1 produces a truncated protein, whereas the Variant 2 was predicted to produce a fusion protein with molecular weight of 110 KDa. Immunoprecipitation and Western blot analysis further showed a 110 KDa protein in colorectal tumors. 5-Azacytidine treatment of LS-174 T cells caused a 3.51-fold increase in expression of the fusion gene (Variant 2) as compared to no treatment controls evaluated by real time PCR. CONCLUSION: In conclusion we found a fusion gene between DNA repair gene Rad51C and neuro-cerebral ataxia Ataxin-7 gene in colorectal tumors. The in-frame fusion transcript of Variant 2 results in a fusion protein with molecular weight of 110 KDa. In addition, we found that expression of fusion gene is associated with functional impairment of Fanconi Anemia (FA) DNA repair pathway in colorectal tumors. The expression of Rad51C-ATXN7 in tumors warrants further investigation, as it suggests the potential of the fusion gene in treatment and predictive value in colorectal cancers.