Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139546

RESUMO

Diclofenac is a highly prescribed non-steroidal anti-inflammatory drug (NSAID) that relieves inflammation, pain, fever, and aches, used at different doses depending on clinical conditions. This drug inhibits cyclooxygenase-1 and cyclooxygenase-2 enzymes, which are responsible for the generation of prostaglandin synthesis. To improve current diclofenac-based therapies, we require new molecular systematic therapeutic approaches to reduce complex multifactorial effects. However, the critical challenge that appears with diclofenac and other drugs of the same class is their side effects, such as signs of stomach injuries, kidney problems, cardiovascular issues, hepatic issues, and diarrhea. In this article, we discuss why defining diclofenac-based mechanisms, pharmacological features, and its medicinal properties are needed to direct future drug development against neurodegeneration and imperfect ageing and to improve cancer therapy. In addition, we describe various advance molecular mechanisms and fundamental aspects linked with diclofenac which can strengthen and enable the better designing of new derivatives of diclofenac to overcome critical challenges and improve their applications.

2.
Drug Metab Rev ; 53(1): 100-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33820460

RESUMO

Ibuprofen is a classical nonsteroidal anti-inflammatory drug (NSAID) highly prescribed to reduce acute pain and inflammation under an array of conditions, including rheumatoid arthritis, osteoarthritis, dysmenorrhea, and gout. Ibuprofen acts as a potential inhibitor for cyclooxygenase enzymes (COX-1 and COX-2). In the past few decades, research on this small molecule has led to identifying other possible therapeutic benefits. Anti-tumorigenic and neuroprotective functions of Ibuprofen are majorly recognized in recent literature and need further consideration. Additionally, several other roles of this anti-inflammatory molecule have been discovered and subjected to experimental assessment in various diseases. However, the major challenge faced by Ibuprofen and other drugs of similar classes is their side effects, and tendency to cause gastrointestinal injury, generate cardiovascular risks, modulate hepatic and acute kidney diseases. Future research should also be conducted to deduce new methods and approaches of suppressing the unwanted toxic changes mediated by these drugs and develop new therapeutic avenues so that these small molecules continue to serve the purposes. This article primarily aims to develop a comprehensive and better understanding of Ibuprofen, its pharmacological features, therapeutic benefits, and possible but less understood medicinal properties apart from major challenges in its future application.KEY POINTSIbuprofen, an NSAID, is a classical anti-inflammatory therapeutic agent.Pro-apoptotic roles of NSAIDs have been explored in detail in the past, holding the key in anti-cancer therapies.Excessive and continuous use of NSAIDs may have several side effects and multiple organ damage.Hyperactivated Inflammation initiates multifold detrimental changes in multiple pathological conditions.Targeting inflammatory pathways hold the key to several therapeutic strategies against many diseases, including cancer, microbial infections, multiple sclerosis, and many other brain diseases.


Assuntos
Artrite Reumatoide , Neoplasias , Osteoartrite , Anti-Inflamatórios não Esteroides/efeitos adversos , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Feminino , Humanos , Ibuprofeno/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/tratamento farmacológico , Osteoartrite/tratamento farmacológico
3.
Cell Signal ; 77: 109836, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207262

RESUMO

Numerous proteins participate and actively contribute to the various cellular mechanisms, where several of them are crucial for regular metabolism, including survival. Thus, to maintain optimal cellular physiology, cells govern protein quality control functions with the assistance of comprehensive actions of molecular chaperones, the ubiquitin-proteasome system, and autophagy. In the ubiquitin-proteasome pathway, few quality control E3 ubiquitin ligases actively participate against misfolded protein aggregation generated via stress conditions. But how these quality control E3s active expression levels returned to basal levels when cells achieved re-establishment of proteostasis is still poorly understood. Our current study demonstrated that LRSAM1 E3 ubiquitin ligase promotes the proteasomal degradation of quality control E3 ubiquitin ligase E6-AP. We have observed the co-localization and recruitment of LRSAM1 with E6-AP protein and noticed that LRSAM1 induces the endogenous turnover of E6-AP. Partial depletion of LRSAM1 elevates the levels of E6-AP and affects overall cell cycle regulatory proteins (p53 and p27) expression, including the rate of cellular proliferation. The current finding also provides an excellent opportunity to better understand the basis of the E6-AP associated pathomechanism of Angelman Syndrome disorder. Additionally, this study touches upon the novel potential molecular strategy to regulate the levels of one quality control E3 ubiquitin ligase with another E3 ubiquitin ligase and restore proteostasis and provide a possible therapeutic approach against abnormal protein aggregation diseases.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células A549 , Animais , Células COS , Proliferação de Células , Chlorocebus aethiops , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Agregados Proteicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
4.
J Cell Physiol ; 234(11): 20900-20914, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31004355

RESUMO

Major neurodegenerative disorders are characterized by the formation of misfolded proteins aggregates inside or outside the neuronal cells. Previous studies suggest that aberrant proteins aggregates play a critical role in protein homeostasis imbalance and failure of protein quality control (PQC) mechanism, leading to disease conditions. However, we still do not understand the precise mechanisms of PQC failure and cellular dysfunctions associated with neurodegenerative diseases caused by the accumulation of protein aggregates. Here, we show that Myricetin, a flavonoid, can eliminate various abnormal proteins from the cellular environment via modulating endogenous levels of Hsp70 chaperone and quality control (QC)-E3 ubiquitin ligase E6-AP. We have observed that Myricetin treatment suppresses the aggregation of different aberrant proteins. Myricetin also enhances the elimination of various toxic neurodegenerative diseases associated proteins from the cells, which could be reversed by the addition of putative proteasome inhibitor (MG132). Remarkably, Myricetin can also stabilize E6-AP and reduce the misfolded proteins inclusions, which further alleviates cytotoxicity. Taken together these findings suggested that new mechanistic and therapeutic insights based on small molecules mediated regulation of disturbed protein quality control mechanism, which may result in the maintenance of the state of proteostasis.


Assuntos
Flavonoides/farmacologia , Degeneração Neural/metabolismo , Polifenóis/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Proteólise , Regulação para Cima/efeitos dos fármacos , Células A549 , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Luciferases/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Degeneração Neural/patologia , Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Solubilidade , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo
5.
J Cell Physiol ; 233(10): 6352-6368, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29741771

RESUMO

In cells, protein synthesis and degradation are normal processes, which are tightly regulated by various cellular metabolic pathways. Cellular protein quality control (PQC) mechanisms always present a continuous and rigorous check over all intracellular proteins before they can participate in various cellular physiological processes with the help of PQC pathways like autophagy and ubiquitin proteasome system (UPS). The UPS employs few selective E3 ubiquitin ligases for the intracellular degradation of cyclin-dependent kinase inhibitor 1B (p27Kip1 ) that tightly controls cell cycle progression. But, the complex mechanistic interactions and the interplay between E3 ubiquitin ligases involved in the functional regulation as well as expression of p27 are not well known. Here, we demonstrate that cell surface glycoprotein Gp78, a putative E3 ubiquitin ligase, is involved in the stabilization of intracellular steady-state levels of p27. Transient overexpression of Gp78 increases the accumulation of p27 in cells in the form of massive inclusions like structures, which could be due to its cumulative increased stability in cells. We have also monitored how under stress condition, E3 ubiquitin ligase Gp78 regulates endogenous levels of p27 in cells. ER stress treatment generates a marginal increase in Gp78 endogenous levels, and this elevation effect was prominent for intracellular accumulation of p27 in cells. Taken together, our current findings suggest a valuable multifactorial regulatory mechanism and linkage of p27 with UPS pathway.


Assuntos
Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Complexo de Endopeptidases do Proteassoma/genética , Receptores do Fator Autócrino de Motilidade/genética , Células A549 , Animais , Autofagia/genética , Células COS , Proteínas de Ciclo Celular/genética , Chlorocebus aethiops , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Redes e Vias Metabólicas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/genética
6.
J Cell Physiol ; 233(2): 1685-1699, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28681929

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of drugs that are mainly used to treat pain, inflammation, and fever via cyclooxygenase-2 (COX-2) inhibition. There are abundant findings that uncover the hidden critical chemotherapeutics potential of NSAIDs in cancer treatment. However, still the precise mechanism by which NSAIDs could be used as an effective anti-tumor agent in the prevention of carcinogenesis is not well understood. Here, we show that indomethacin, a well-known NSAID, induces proteasomal dysfunction that results in accumulation of unwanted proteins, mitochondrial abnormalities, and successively stimulate apoptosis in cells. We observed the interaction of indomethacin with proteasome and noticed the massive accumulation of intracellular ubiquitin-positive proteins, which might be due to the suppression of proteasome activities. Furthermore, we also found that exposure of indomethacin causes the accumulation of critical proteasomal substrates that consequently generate severe mitochondrial abnormalities and prompt up key apoptotic events in cells. Our results demonstrate how indomethacin affects normal proteasomal functions and induces mitochondrial apoptosis in cells. These findings also improve our current understanding of how NSAIDs can exhibit crucial anti-proliferative effects in cells. In near future, our findings may suggest a new possible strategy for the development of specific proteasome inhibitors in conjunction with other chemo-preventive anticancer agents.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Indometacina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Células A549 , Animais , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/química , Células COS , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Indometacina/química , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Agregados Proteicos , Ligação Proteica , Proteólise , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Tempo , Ubiquitinação
7.
Prog Neurobiol ; 159: 1-38, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28870769

RESUMO

Proteins are ordered useful cellular entities, required for normal health and organism's survival. The proteome is the absolute set of cellular expressed proteins, which regulates a wide range of physiological functions linked with all domains of life. In aging cells or under unfavorable cellular conditions, misfolding of proteins generates common pathological events linked with neurodegenerative diseases and aging. Current advances of proteome studies systematically generates some progress in our knowledge that how misfolding of proteins or their accumulation can contribute to the impairment or depletion of proteome functions. Still, the underlying causes of this unrecoverable loss are not clear that how such unsolved transitions give rise to multifactorial challengeable degenerative pathological conditions in neurodegeneration. In this review, we specifically focus and systematically summarize various molecular mechanisms of proteostasis maintenance, as well as discuss progressing neurobiological strategies, promising natural and pharmacological candidates, which can be useful to counteract the problem of proteopathies. Our article emphasizes an urgent need that now it is important for us to recognize the fundamentals of proteostasis to design a new molecular framework and fruitful strategies to uncover how the proteome defects are associated with aging and neurodegenerative diseases. A enhance understanding of progress link with proteome and neurobiological challenges may provide new basic concepts in the near future, based on pharmacological agents, linked with impaired proteostasis and neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas/metabolismo , Proteoma/fisiologia , Proteostase/fisiologia , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Humanos , Neoplasias/metabolismo , Doenças Neurodegenerativas/genética , Proteoma/genética , Proteostase/genética
8.
J Cell Biochem ; 118(5): 1014-1027, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27487200

RESUMO

Diclofenac is the most commonly used phenylacetic acid derivative non-steroidal anti-inflammatory drug (NSAID) that demonstrates significant analgesic, antipyretic, and anti-inflammatory effects. Several epidemiological studies have demonstrated anti-proliferative activity of NSAIDs and examined their apoptotic induction effects in different cancer cell lines. However, the precise molecular mechanisms by which these pharmacological agents induce apoptosis and exert anti-carcinogenic properties are not well known. Here, we have observed that diclofenac treatment induces proteasome malfunction and promotes accumulation of different critical proteasome substrates, including few pro-apoptotic proteins in cells. Exposure of diclofenac consequently elevates aggregation of various ubiquitylated misfolded proteins. Finally, we have shown that diclofenac treatment promotes apoptosis in cells, which could be because of mitochondrial membrane depolarization and cytochrome c release into cytosol. This study suggests possible beneficial insights of NSAIDs-induced apoptosis that may improve our existing knowledge in anti-proliferative interspecific strategies development. J. Cell. Biochem. 118: 1014-1027, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Diclofenaco/farmacologia , Mitocôndrias/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Células A549 , Animais , Apoptose , Células COS , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Potencial da Membrana Mitocondrial/efeitos dos fármacos
9.
Sci Rep ; 6: 39239, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27995955

RESUMO

Piperine, a naturally occurring alkaloid, is well known as anti-oxidant, anti-mutagenic, anti-tumor and anti-proliferative agent. Piperine exerts such pharmacological activities by binding or interacting with various cellular targets. Recently, the first report for Piperine interaction with duplex DNA has been published last year but its interaction with G-quadruplex structures has not been studied yet. Herein, we report for the first time the interaction of Piperine with various DNA G-quadruplex structures. Comprehensive biophysical techniques were employed to determine the basis of interaction for the complex formed between Piperine and G-quadruplex DNA sequences. Piperine showed specificity for G-quadruplex DNA over double stranded DNA, with highest affinity for G-quadruplex structure formed at c-myc promoter region. Further, in-vitro studies show that Piperine causes apoptosis-mediated cell death that further emphasizes the potential of this natural product, Piperine, as a promising candidate for targeting G-quadruplex structure and thus, acts as a potent anti-cancer agent.


Assuntos
Alcaloides/toxicidade , Antineoplásicos/toxicidade , Benzodioxóis/toxicidade , Quadruplex G/efeitos dos fármacos , Piperidinas/toxicidade , Alcamidas Poli-Insaturadas/toxicidade , Células A549 , Alcaloides/química , Alcaloides/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzodioxóis/química , Benzodioxóis/uso terapêutico , Sítios de Ligação , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Piperidinas/química , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/uso terapêutico , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Espectrometria de Fluorescência , Temperatura
10.
Mol Neurobiol ; 53(10): 6968-6981, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26666667

RESUMO

In routine course of life, nonsteroidal anti-inflammatory drugs (NSAIDs) are widely prescribed antipyretic, analgesic, and anti-inflammatory drugs. It is a well-proposed notion that treatment of NSAIDs may induce anti-proliferative effects in numerous cancer cells. Ibuprofen from isobutylphenylpropanoic acid is NSAID and used to relieve fever, pain, and inflammation. It is also used for juvenile idiopathic arthritis, rheumatoid arthritis, patent ductus arteriosus, and for pericarditis. Despite few emerging studies have expanded the fundamental concept that the treatment of NSAIDs influences apoptosis in cancer cells, however the NSAID-mediated precise mechanisms that determine apoptosis induction without producing adverse consequences in variety of cancer cells are largely unknown. In our present study, we have observed that ibuprofen reduces proteasome activity, enhances the aggregation of ubiquitylated abnormal proteins, and also elevates the accumulation of crucial proteasome substrates. Ibuprofen treatment causes mitochondrial abnormalities and releases cytochrome c into cytosol. Perhaps, the more detailed study is needed in the future to elucidate the molecular mechanisms of NSAIDs that can induce apoptosis without adverse effects and produce effective anti-tumor effects and consequently help in neurodegeneration and ageing.


Assuntos
Apoptose/efeitos dos fármacos , Ibuprofeno/farmacologia , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Células A549 , Animais , Células COS , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Forma do Núcleo Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromatina/metabolismo , Citocromos c/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Humanos , Corpos de Inclusão/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo , Proteínas Ubiquitinadas/metabolismo
11.
Ageing Res Rev ; 24(Pt B): 138-59, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26247845

RESUMO

Efficient and regular performance of Ubiquitin Proteasome System and Autophagy continuously eliminate deleterious accumulation of nonnative protiens. In cellular quality control system, E3 ubiquitin ligases are significant employees for defense mechanism against abnormal toxic proteins. Few findings indicate that lack of functions of E3 ubiquitin ligases can be a causative factor of neurodevelopmental disorders, neurodegeneration, cancer and ageing. However, the detailed molecular pathomechanism implying E3 ubiquitin ligases in cellular functions in multifactorial disease conditions are not well understood. This article systematically represents the unique characteristics, molecular nature, and recent developments in the knowledge of neurobiological functions of few crucial E3 ubiquitin ligases. Here, we review recent literature on the roles of E6-AP, HRD1 and ITCH E3 ubiquitin ligases in the neuro-pathobiological mechanisms, with precise focus on the processes of neurodegeneration, and thereby propose new lines of potential targets for therapeutic interventions.


Assuntos
Envelhecimento/fisiologia , Degeneração Neural/metabolismo , Doenças Neurodegenerativas , Neuroproteção/fisiologia , Ubiquitina-Proteína Ligases , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/classificação , Ubiquitina-Proteína Ligases/metabolismo
12.
Biochim Biophys Acta ; 1842(9): 1472-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24769000

RESUMO

Polyglutamine diseases are a family of inherited neurodegenerative diseases caused by the expansion of CAG repeats within the coding region of target genes. Still the mechanism(s) by which polyglutamine proteins are ubiquitinated and degraded remains obscure. Here, for the first time, we demonstrate that Mahogunin 21 ring finger 1 E3 ubiquitin protein ligase is depleted in cells that express expanded-polyglutamine proteins. MGRN1 co-immunoprecipitates with expanded-polyglutamine huntingtin and ataxin-3 proteins. Furthermore, we show that MGRN1 is predominantly colocalized and recruits with polyglutamine aggregates in both cellular and transgenic mouse models. Finally, we demonstrate that the partial depletion of MGRN1 increases the rate of aggregate formation and cell death, whereas the overexpression of MGRN1 reduces the frequency of aggregate formation and provides cytoprotection against polyglutamine-induced proteotoxicity. These observations suggest that stimulating the activity of MGRN1 ubiquitin ligase might be a potential therapeutic target to eliminate the cytotoxic threat in polyglutamine diseases.


Assuntos
Apoptose , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Dobramento de Proteína , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitina/metabolismo , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Imunofluorescência , Humanos , Proteína Huntingtina , Imunoprecipitação , Masculino , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA