Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 8(9): 2059-2073, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38266153

RESUMO

ABSTRACT: Novel therapies are needed for effective treatment of acute myeloid leukemia (AML). Relapse is common and salvage treatment with cytotoxic chemotherapy is rarely curative. CD123 and CD33, 2 clinically validated targets in AML, are jointly expressed on blasts and leukemic stem cells in >95% of patients with AML. However, their expression is heterogenous between subclones and between patients, which may affect the efficacy of single-targeting agents in certain patient populations. We present here a dual-targeting CD33/CD123 NANOBODY T-cell engager (CD33/CD123-TCE) that was designed to decrease the risk of relapse from possible single antigen-negative clones and to increase coverage within and across patients. CD33/CD123-TCE killed AML tumor cells expressing 1 or both antigens in vitro. Compared with single-targeting control compounds, CD33/CD123-TCE conferred equal or better ex vivo killing of AML blasts in most primary AML samples tested, suggesting a broader effectiveness across patients. In a disseminated cell-line-derived xenograft mouse model of AML, CD33/CD123-TCE cleared cancer cells in long bones and in soft tissues. As cytokine release syndrome is a well-documented adverse effect of TCE, the compound was tested in a cytokine release assay and shown to induce less cytokines compared to a CD123 single-targeting control. In an exploratory single-dose nonhuman primate study, CD33/CD123-TCE revealed a favorable PK profile. Depletion of CD123 and CD33 expressing cells was observed, but there were neither signs of cytokine release syndrome nor clinical signs of toxicity. Taken together, the CD33/CD123 dual-targeting NANOBODY TCE exhibits potent and safe anti-AML activity and promises a broad patient coverage.


Assuntos
Subunidade alfa de Receptor de Interleucina-3 , Leucemia Mieloide Aguda , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Anticorpos de Domínio Único , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-3/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-3/imunologia , Animais , Camundongos , Anticorpos de Domínio Único/uso terapêutico , Anticorpos de Domínio Único/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Feminino
2.
Nat Biotechnol ; 41(9): 1296-1306, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36635380

RESUMO

CD123, the alpha chain of the IL-3 receptor, is an attractive target for acute myeloid leukemia (AML) treatment. However, cytotoxic antibodies or T cell engagers targeting CD123 had insufficient efficacy or safety in clinical trials. We show that expression of CD64, the high-affinity receptor for human IgG, on AML blasts confers resistance to anti-CD123 antibody-dependent cell cytotoxicity (ADCC) in vitro. We engineer a trifunctional natural killer cell engager (NKCE) that targets CD123 on AML blasts and NKp46 and CD16a on NK cells (CD123-NKCE). CD123-NKCE has potent antitumor activity against primary AML blasts regardless of CD64 expression and induces NK cell activation and cytokine secretion only in the presence of AML cells. Its antitumor activity in a mouse CD123+ tumor model exceeds that of the benchmark ADCC-enhanced antibody. In nonhuman primates, it had prolonged pharmacodynamic effects, depleting CD123+ cells for more than 10 days with no signs of toxicity and very low inflammatory cytokine induction over a large dose range. These results support clinical development of CD123-NKCE.


Assuntos
Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Células Matadoras Naturais , Citotoxicidade Celular Dependente de Anticorpos , Linfócitos T , Citocinas/metabolismo , Subunidade alfa de Receptor de Interleucina-3
3.
Oncoimmunology ; 10(1): 1945803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484869

RESUMO

Novel therapies are needed for effective treatment of AML. In the relapsed setting, prognosis is very poor despite salvage treatment with chemotherapy. Evidence suggests that leukemic stem cells (LSCs) cause relapse. The cell surface receptor CD123 is highly expressed in blast cells and LSCs from AML patients and is a potential therapeutic target. CD123 cross-over dual-variable domain T-cell engager (CD123-CODV-TCE) is a bispecific antibody with an innovative format. One arm targets the CD3εδ subunit of T-cell co-receptors on the surface of T cells, while the other targets CD123 on malignant cells, leading to cell-specific cytotoxic activity. Here, we describe the preclinical activity of CD123-CODV-TCE. CD123-CODV-TCE effectively binds to human and cynomolgus monkey CD3 and CD123 and is a highly potent T-cell engager. It mediates T-cell activation and T-cell-directed killing of AML cells in vitro. In vivo, CD123-CODV-TCE suppresses AML tumor growth in leukemia xenograft mouse models, where it achieves an effective half-life of 3.2 days, which is a significantly longer half-life compared to other bispecific antibodies with no associated Fc fragment. The in vitro safety profile is as expected for compounds with similar modes of action. These results suggest that CD123-CODV-TCE may be a promising therapy for patients with relapsed/refractory AML.


Assuntos
Anticorpos Biespecíficos , Leucemia Mieloide Aguda , Animais , Complexo CD3 , Humanos , Subunidade alfa de Receptor de Interleucina-3 , Leucemia Mieloide Aguda/tratamento farmacológico , Macaca fascicularis , Camundongos , Linfócitos T
4.
Clin Cancer Res ; 26(24): 6589-6599, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33046521

RESUMO

PURPOSE: Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is a glycoprotein that has limited expression in normal adult tissues, but is overexpressed in carcinomas of the gastrointestinal tract, the genitourinary and respiratory systems, and breast cancer. As such, CEACAM5 is an attractive target for antibody-based therapies designed to selectively deliver cytotoxic drugs to certain epithelial tumors. Here, we describe preclinical data for a novel antibody-drug conjugate (ADC), SAR408701, which consists of an anti-CEACAM5 antibody (SAR408377) coupled to a maytansinoid agent DM4 via a cleavable linker. EXPERIMENTAL DESIGN: The specificity and binding affinity of SAR408701 to human and cynomolgus monkey CEACAM5 were tested in vitro. The cytotoxic activity of SAR408701 was assessed in CEACAM5-expressing tumor cell lines and using patient-derived xenograft mouse models of CEACAM5-positive tumors. Pharmacokinetic-pharmacodynamic and pharmacokinetic-efficacy relationships were established. SAR408701 toxicity was evaluated in cynomolgus monkey. RESULTS: SAR408701 bound selectively to human and cynomolgus monkey CEACAM5 with similar apparent Kd values (0.017 nmol/L and 0.024 nmol/L, respectively). Both in vitro and in vivo evaluations showed that SAR408701 has cytotoxic activity, leading to in vivo efficacy in single and repeated dosing. Single doses of SAR408701 induced significant increases in the tumor expression of phosphorylated histone H3, confirming the tubulin-targeting mechanism of action. The overall toxicity profile of SAR408701 in cynomolgus monkey was similar to that observed after intravenous administration of DM4 alone. CONCLUSIONS: On the basis of these preclinical data, the ADC SAR408701 is a promising candidate for development as a potential treatment for patients with CEACAM5-positive tumors.


Assuntos
Anticorpos Monoclonais/química , Anticorpos/farmacologia , Antineoplásicos/farmacologia , Imunoconjugados/farmacologia , Maitansina/química , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Animais , Anticorpos/química , Anticorpos/uso terapêutico , Anticorpos Monoclonais/imunologia , Antineoplásicos/química , Apoptose , Antígeno Carcinoembrionário/imunologia , Proliferação de Células , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/imunologia , Humanos , Macaca fascicularis , Camundongos , Camundongos SCID , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Clin Pharmacol ; 57(7): 865-875, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28138963

RESUMO

This work proposes a model-based approach to help select the phase 1 dosing regimen for the antibody-drug conjugate (ADC) SAR408701 leveraging the available data for 2 other ADCs of the same construct: SAR3419 and SAR566658. First, monkey and human pharmacokinetic (PK) data of SAR566658 and SAR3419 were used to establish the appropriate allometric approach to be applied to SAR408701 monkey PK data. Second, a population pharmacokinetics-pharmacodynamics (PK-PD) model was developed to describe tumor volume evolution following SAR408701 injection in mice. Third, allometric approaches identified for SAR566658 and SAR3419 were applied to SAR408701 monkey PK data to predict the human PK profile. Both SAR566658 and SAR3419 human and monkey PK were best described by a 2-compartment linear model. The relative difference was less than 10% between predicted and observed clearance using allometric exponents of 0.75 and 1, respectively. Tumor volume evolution following SAR408701 injection was best described by a full Simeoni model with a plasma concentration threshold of 4.6 µg/mL for eradication in mice. Both allometric exponents were used to predict SAR408701 PK in human from PK in monkey and to identify the potential effective dosing regimens. This translational strategy may be a valuable tool to design future clinical studies for ADCs, to support selection of the most appropriate dosing regimen, and to estimate the minimal dose required to assure antitumor activity, according to the schedule used.


Assuntos
Imunoconjugados/administração & dosagem , Modelos Biológicos , Pesquisa Translacional Biomédica , Animais , Simulação por Computador , Relação Dose-Resposta a Droga , Haplorrinos , Humanos , Camundongos
6.
J Med Chem ; 57(3): 903-20, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24387221

RESUMO

Compelling molecular biology publications have reported the implication of phosphoinositide kinase PI3Kß in PTEN-deficient cell line growth and proliferation. These findings supported a scientific rationale for the development of PI3Kß-specific inhibitors for the treatment of PTEN-deficient cancers. This paper describes the discovery of 2-[2-(2,3-dihydro-indol-1-yl)-2-oxo-ethyl]-6-morpholin-4-yl-3H-pyrimidin-4-one (7) and the optimization of this new series of active and selective pyrimidone indoline amide PI3Kß inhibitors. 2-[2-(2-Methyl-2,3-dihydro-indol-1-yl)-2-oxo-ethyl]-6-morpholin-4-yl-3H-pyrimidin-4-one (28), identified following a carefully designed methyl scan, displayed improved physicochemical and in vitro pharmacokinetic properties. Structural biology efforts enabled the acquisition of the first X-ray cocrystal structure of p110ß with the selective inhibitor compound 28 bound to the ATP site. The nonplanar binding mode described herein is consistent with observed structure-activity relationship for the series. Compound 28 demonstrated significant in vivo activity in a UACC-62 xenograft model in mice, warranting further preclinical investigation. Following successful development, compound 28 entered phase I/Ib clinical trial in patients with advanced cancer.


Assuntos
Antineoplásicos/química , Indóis/química , Neoplasias/tratamento farmacológico , PTEN Fosfo-Hidrolase/deficiência , Inibidores de Fosfoinositídeo-3 Quinase , Pirimidinonas/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Xenoenxertos , Humanos , Indóis/farmacocinética , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Microssomos Hepáticos/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Transplante de Neoplasias , Neoplasias/enzimologia , PTEN Fosfo-Hidrolase/genética , Ligação Proteica , Pirimidinonas/farmacocinética , Pirimidinonas/farmacologia , Ratos , Ratos Nus , Solubilidade , Estereoisomerismo , Relação Estrutura-Atividade
7.
Methods Mol Biol ; 1045: 101-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23913143

RESUMO

Antibody-drug conjugates (ADCs) are promising biotherapeutics designed to selectively deliver highly cytotoxic drugs to tumor cells while sparing normal tissues. They can be viewed as prodrugs, stable in the bloodstream in order to minimize drug release in circulation and efficiently converted into active drugs in the tumor tissues. Designing the right combination of monoclonal antibody (mAb), linker and drug, requires monitoring and understanding the behavior of all three components in the bloodstream and tumor. In particular, linkers have been shown to influence efficacy and safety profiles of ADCs, and monitoring in vivo "drug-linker stability" is therefore critical to help the linker choice and is performed by identifying the pharmacokinetics (PK) profiles. PK properties of ADCs are measured by following the profiles of three entities: (a) the conjugate (mAb entity carrying at least one drug), (b) the total antibody (mAb entity regardless of drug load), as well as (c) the free drugs and metabolites entities. This chapter focuses on the key analytical methods (ELISA immunoassays, TFC-MS/MS, and HRMS) used to support the PK profiles assessment of the three entities, allowing the characterization of ADC "drug-linker stability".


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Imunoconjugados/farmacocinética , Preparações Farmacêuticas/química , Espectrometria de Massas em Tandem/métodos , Animais , Anticorpos Monoclonais/química , Feminino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA