Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 366: 110130, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037875

RESUMO

Atrazine (ATR), one of the most used herbicides worldwide, causes persistent contamination of water and soil due to its high resistance to degradation. ATR is associated with low fertility and increased risk of prostate cancer in humans, as well as birth defects, low birth weight and premature delivery. Describing ATR binding to human serum albumin (HSA) is clinically relevant to future studies about pharmacokinetics, pharmacodynamics and toxicity of ATR, as albumin is the most abundant carrier protein in plasma and binds important small biological molecules. In this work we characterize, for the first time, the binding of ATR to HSA by using fluorescence spectroscopy and performing simulations using molecular docking, classical molecular dynamics and quantum biochemistry based on density functional theory (DFT). We determine the most likely binding sites of ATR to HSA, highlighting the fatty acid binding site FA8 (located between subdomains IA-IB-IIA and IIB-IIIA-IIIB) as the most important one, and evaluate each nearby amino acid residue contribution to the binding interactions explaining the fluorescence quenching due to ATR complexation with HSA. The stabilization of the ATR/FA8 complex was also aided by the interaction between the atrazine ring and SER454 (hydrogen bond) and LEU481(alkyl interaction).


Assuntos
Atrazina , Herbicidas , Aminoácidos/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Dicroísmo Circular , Ácidos Graxos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Albumina Sérica Humana/química , Solo , Espectrometria de Fluorescência , Termodinâmica , Água
2.
Future Microbiol ; 17: 1133-1146, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35880557

RESUMO

Introduction: Candida krusei and Candida albicans are biofilm-forming drug-resistant yeasts that cause bloodstream infections that can lead to death. Materials & methods: nystatin and itraconazole were combined with two synthetic peptides, PepGAT and PepKAA, to evaluate the synergistic effect against Candida biofilms. Additionally, scanning electron and fluorescence microscopies were employed to understand the mechanism behind the synergistic activity. Results: Peptides enhanced the action of drugs to inhibit the biofilm formation of C. krusei and C. albicans and the degradation of mature biofilms of C. krusei. In combination with antifungal drugs, peptides' mechanism of action involved cell wall and membrane damage and overproduction of reactive oxygen species. Additionally, in combination, the peptides reduced the toxicity of drugs to red blood cells. Conclusion: These results reveal that the synthetic peptides enhanced the antibiofilm activity of drugs, in addition to reducing their toxicity. Thus, these peptides have strong potential as adjuvants and to decrease the toxicity of drugs.


Candida krusei and Candida albicans are biofilm-forming, drug-resistant yeasts that cause bloodstream infections that can lead to death. In this study, biofilms of C. krusei and C. albicans were treated with a solution composed of synthetic peptides and antifungal drugs, none of which were effective alone. The synthetic peptides reduced the toxicity of drugs to red blood cells. These results may pave the way to the application of synthetic peptides as a beneficial additional to antifungal drugs to treat fungi that cannot be killed by drugs alone.


Assuntos
Antifúngicos , Candida , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes , Candida albicans , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia
3.
J Biomol Struct Dyn ; 40(12): 5493-5506, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33427102

RESUMO

Vaccines could be the solution to the current SARS-CoV-2 outbreak. However, some studies have shown that the immunological memory only lasts three months. Thus, it is imperative to develop pharmacological treatments to cope with COVID-19. Here, the in silico approach by molecular docking, dynamic simulations and quantum biochemistry revealed that ACE2-derived peptides strongly interact with the SARS-CoV-2 RBD domain of spike glycoprotein (S-RBD). ACE2-Dev-PepI, ACE2-Dev-PepII, ACE2-Dev-PepIII and ACE2-Dev-PepIV complexed with S-RBD provoked alterations in the 3D structure of S-RBD, leading to disruption of the correct interaction with the ACE2 receptor, a pivotal step for SARS-CoV-2 infection. This wrong interaction between S-RBD and ACE2 could inhibit the entry of SARS-CoV-2 in cells, and thus virus replication and the establishment of COVID-19 disease. Therefore, we suggest that ACE2-derived peptides can interfere with recognition of ACE2 in human cells by SARS-CoV-2 in vivo. Bioinformatic prediction showed that these peptides have no toxicity or allergenic potential. By using ACE2-derived peptides against SARS-CoV-2, this study points to opportunities for further in vivo research on these peptides, seeking to discover new drugs and entirely new perspectives to treat COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
J Biomol Struct Dyn ; 40(19): 8925-8937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33949286

RESUMO

The recent outbreak caused by SARS-CoV-2 continues to threat and take many lives all over the world. The lack of an efficient pharmacological treatments are serious problems to be faced by scientists and medical staffs worldwide. In this work, an in silico approach based on the combination of molecular docking, dynamics simulations, and quantum biochemistry revealed that the synthetic peptides RcAlb-PepI, PepGAT, and PepKAA, strongly interact with the main protease (Mpro) a pivotal protein for SARS-CoV-2 replication. Although not binding to the proteolytic site of SARS-CoV-2 Mpro, RcAlb-PepI, PepGAT, and PepKAA interact with other protein domain and allosterically altered the protease topology. Indeed, such peptide-SARS-CoV-2 Mpro complexes provoked dramatic alterations in the three-dimensional structure of Mpro leading to area and volume shrinkage of the proteolytic site, which could affect the protease activity and thus the virus replication. Based on these findings, it is suggested that RcAlb-PepI, PepGAT, and PepKAA could interfere with SARS-CoV-2 Mpro role in vivo. Also, unlike other antiviral drugs, these peptides have no toxicity to human cells. This pioneering in silico investigation opens up opportunity for further in vivo research on these peptides, towards discovering new drugs and entirely new perspectives to treat COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Domínio Catalítico , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , Simulação de Dinâmica Molecular
5.
J Cell Biochem ; 122(10): 1376-1388, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34160883

RESUMO

Gastric cancer is one of the most common and deadly types of cancer in the world, and poor prognosis with treatment failure is widely reported in the literature. In this context, kinases have been considered a relevant choice for targeted therapy in gastric cancer. Here, we explore the antiproliferative and antimigratory effects of the AURKA inhibitor and the prognostic and therapeutic value as a biomarker of gastric cancer. A total of 145 kinase inhibitors were screened to evaluate the cytotoxic or cytostatic effects in the gastric cancer cell line. Using the Alamar Blue assay, flow cytometry, quantitative polymerase chain reaction, and observation of caspase 3/7 activity and cell migration, we investigated the antiproliferative, proapoptotic, and antimigratory effects of the AURKA inhibitor. Moreover, AURKA overexpression was evaluated in the gastric cell lines and the gastric tumor tissue. Out of the 145 inhibitors, two presented the highest antiproliferative effect. Both molecules can induce apoptosis by the caspases 3/7 pathway in addition to inhibiting cancer cell migration, mainly the AURKA inhibitor. Moreover, molecular docking analysis revealed that GW779439X interacts in the active site of the AURKA enzyme with similar energy as a well-described inhibitor. Our study identified AURKA overexpression in the gastric cancer cell line and gastric tumor tissue, revealing that its overexpression in patients with cancer is correlated with low survival. Therefore, it is feasible to suggest AURKA as a potential marker of gastric cancer, besides providing robust information for diagnosis and estimated survival of patients. AURKA can be considered a new molecular target used in the prognosis and therapy of gastric cancer.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Piridazinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Apoptose , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Prognóstico , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/patologia , Taxa de Sobrevida
6.
Life Sci ; 281: 119775, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34186044

RESUMO

AIMS: The Candida genus is composed of opportunistic pathogens that threaten public health. Given the increase in resistance to current drugs, it is necessary to develop new drugs to treat infections by these pathogens. Antimicrobial peptides are promising alternative molecules with low cost, broad action spectrum and low resistance induction. This study aimed to clarify the action mechanisms of synthetic peptides against Candida albicans. MAIN METHODS: The mode of action of the anticandidal peptides Mo-CBP3-PepIII were analyzed through molecular dynamics and quantum biochemistry methods against Exo-ß-1,3-glucanase (EXG), vital to cell wall metabolism. Furthermore, scanning electron (SEM) and fluorescence (FM) microscopies were employed to corroborate the in silico data. KEY FINDINGS: Mo-CBP3-PepIII strongly interacted with EXG (-122.2 kcal mol-1) at the active site, higher than the commercial inhibitor pepstatin. Also, molecular dynamics revealed the insertion of Mo-CBP3-PepIII into the yeast membrane. SEM analyses revealed that Mo-CBP3-PepIII induced cracks and scars of the cell wall and FM analyses confirmed the pore formation on the Candida membrane. SIGNIFICANCE: Mo-CBP3-PepIII has strong potential as a new drug with a broad spectrum of action, given its different mode of action compared to conventional drugs.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Biologia Computacional , Microscopia Eletrônica de Varredura/métodos , Microscopia de Fluorescência/métodos , Peptídeos/farmacologia , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo
7.
Mol Immunol ; 127: 203-211, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33011403

RESUMO

Cancer is a group of diseases involving disordered growth of abnormal cells with the potential to invade and spread to other parts of the body. Today, immunotherapy is the most efficient treatment, with fewer side effects. Notably, the employment of monoclonal antibodies to inhibit checkpoint proteins, such as CTLA-4, has caused much excitement among cancer immunotherapy researchers. Thus, in-depth analysis through quantum biochemistry and molecular dynamics simulations was performed to understand the complex formed by ipilimumab and its target CTLA-4. Our computational results provide a better understanding of the binding mechanisms and new insights about the CTLA-4: ipilimumab interaction, identifying essential amino acid residues to support the complex. Additionally, we report new interactions such as aromatic-aromatic, aromatic-sulfur, and cation-pi interactions to stabilize the CTLA-4:ipilimumab complex. Finally, quantum biochemistry analyses reveal the most important amino acid residues involved in the CTLA-4:ipilimumab interface, which were used to design synthetic peptides to inhibit CTLA-4. The computational results presented here provide a better understanding of the CTLA-4:ipilimumab binding mechanisms, and can support the development of alternative antibody-based drugs with high relevance in cancer immunotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Antígeno CTLA-4/imunologia , Desenho de Fármacos , Imunoterapia , Ipilimumab/uso terapêutico , Neoplasias/imunologia , Neoplasias/terapia , Peptídeos/uso terapêutico , Antígeno CTLA-4/química , Eletricidade , Humanos , Ipilimumab/química , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação Proteica , Proteólise , Termodinâmica
8.
Int J Biol Macromol ; 164: 66-76, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693122

RESUMO

The global outbreak of COVID-19 (Coronavirus Disease 2019) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome caused by Coronavirus 2) began in December 2019. Its closest relative, SARS-CoV-1, has a slightly mutated Spike (S) protein, which interacts with ACE2 receptor in human cells to start the infection. So far, there are no vaccines or drugs to treat COVID-19. So, research groups worldwide are seeking new molecules targeting the S protein to prevent infection by SARS-CoV-2 and COVID-19 establishment. We performed molecular docking analysis of eight synthetic peptides against SARS-CoV-2 S protein. All interacted with the protein, but Mo-CBP3-PepII and PepKAA had the highest affinity with it. By binding to the S protein, both peptides led to conformational alterations in the protein, resulting in incorrect interaction with ACE2. Therefore, given the importance of the S protein-ACE2 interaction for SARS-CoV-2 infection, synthetic peptides could block SARS-CoV-2 infection. Moreover, unlike other antiviral drugs, peptides have no toxicity to human cells. Thus, these peptides are potential molecules to be tested against SARS-CoV-2 and to develop new drugs to treat COVID-19.


Assuntos
Antivirais/farmacologia , Betacoronavirus/química , Infecções por Coronavirus/tratamento farmacológico , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Pneumonia Viral/tratamento farmacológico , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2 , Antivirais/química , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , Sítios de Ligação/efeitos dos fármacos , COVID-19 , Biologia Computacional , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Humanos , Simulação de Acoplamento Molecular , Pandemias , Peptídeos/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA