Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 38(7): 3008-17, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23869620

RESUMO

The role of glutamate receptors present in the medullary dorsal reticular nucleus (DRt) in the formalin test and formalin-induced secondary nociception was studied in rats. Secondary mechanical allodynia was assessed with von Frey filaments applied to the rat's hindpaw, and secondary thermal hyperalgesia was evaluated with the tail-immersion test. The selective glutamate receptor antagonists MK801 (N-methyl-D-aspartate receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (AMPA/KA receptor antagonist) and A841720 (metabotropic glutamate 1 receptor antagonist) were injected into the DRt before or 6 days after formalin injection in the rat. In the formalin test, the three antagonists significantly reduced the number of flinches in both phases of the test. DRt microinjection of MK801 or A841720, but not of CNQX, reduced both secondary nociceptive behaviors. Moreover, pre-treatment with the three antagonists injected into the DRt prevented the development of secondary mechanical allodynia and secondary thermal hyperalgesia. Similarly, in these rats, the number of c-Fos-like immunoreactive neurons were markedly reduced in both the superficial and deep lamina of the dorsal horn. Our findings support the role of DRt as a pain facilitator in acute and chronic pain states, and suggest a key role of glutamate receptors during the development and maintenance of formalin-induced secondary allodynia.


Assuntos
Hiperalgesia/metabolismo , Receptores de Glutamato/metabolismo , Formação Reticular/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Formaldeído , Compostos Heterocíclicos com 3 Anéis/farmacologia , Temperatura Alta , Hiperalgesia/tratamento farmacológico , Imuno-Histoquímica , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Formação Reticular/efeitos dos fármacos , Tato
2.
Eur J Pharmacol ; 631(1-3): 17-23, 2010 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-20079349

RESUMO

The possible antiallodynic effect of phosphodiesterase 5 inhibitor sildenafil and nitric oxide donor glyceryl trinitrate as well as the changes in phosphodiesterase 5A2 mRNA expression in dorsal root ganglion and spinal cord of allodynic diabetic rats was assessed. Diabetes was induced by streptozotocin (50mg/kg, i.p.) in male Wistar rats. Streptozotocin injection produced hyperlglycemia, polydipsia, polyphagia and polyuria as well as long-term tactile allodynia (12 weeks) and a reduction of phosphodiesterase 5A2 mRNA expression in spinal cord of diabetic rats. Systemic administration of sildenafil (1-5.6 mg/kg, i.p.) reduced tactile allodynia in a dose-dependent manner in diabetic rats. Likewise, glyceryl trinitrate patches (0.2mg/h) also reduced tactile allodynia in diabetic rats. Moreover, both drugs reversed streptozotocin-induced phosphodiesterase 5A2 mRNA expression reduction. Our results indicate that glyceryl trinitrate and sildenafil reduce tactile allodynia in diabetic rats suggesting that nitric oxide and cyclic GMP supply is an important step in their mechanism of action of these drugs in diabetic animals. Data suggest that nitric oxide donors (as glyceryl trinitrate) and drugs which increase cyclic GMP levels (as sildenafil) could have a role in the pharmacotherapy of tactile allodynia in diabetic patients.


Assuntos
Analgésicos/uso terapêutico , Neuropatias Diabéticas/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Doadores de Óxido Nítrico/uso terapêutico , Nitroglicerina/uso terapêutico , Inibidores de Fosfodiesterase/uso terapêutico , Piperazinas/uso terapêutico , Sulfonas/uso terapêutico , Tato , Administração Cutânea , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/metabolismo , Relação Dose-Resposta a Droga , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Isoenzimas , Masculino , Doadores de Óxido Nítrico/administração & dosagem , Nitroglicerina/administração & dosagem , Medição da Dor , Inibidores da Fosfodiesterase 5 , Inibidores de Fosfodiesterase/administração & dosagem , Piperazinas/administração & dosagem , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Purinas/administração & dosagem , Purinas/uso terapêutico , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Citrato de Sildenafila , Estreptozocina , Sulfonas/administração & dosagem , Fatores de Tempo
3.
CNS Neurosci Ther ; 14(3): 234-47, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18684235

RESUMO

Resveratrol is a phytoalexin structurally related to stilbenes, which is synthesized in considerable amounts in the skin of grapes, raspberries, mulberries, pistachios and peanuts, and by at least 72 medicinal and edible plant species in response to stress conditions. It was isolated in 1940 and did not maintain much interest for around five decades until its role in treatment of cardiovascular diseases was suggested. To date, resveratrol has been identified as an agent that may be useful to treat cancer, pain, inflammation, tissue injury, and other diseases. However, currently the attention is being focused in analyzing its properties against neurodegenerative diseases and as antiaging compound. It has been reported that resveratrol shows effects in in vitro models of epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and nerve injury. However, evidences in vivo as well as in human beings are still lacking. Thus, further investigations on the pharmacological effects of resveratrol in vivo are necessary before any conclusions on its effects on neurodegenerative diseases can be obtained.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estilbenos/farmacologia , Terpenos/farmacologia , Animais , Humanos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Dor/tratamento farmacológico , Resveratrol , Sesquiterpenos , Estilbenos/química , Estilbenos/farmacocinética , Fitoalexinas
4.
Pharmacol Biochem Behav ; 84(3): 535-42, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16899286

RESUMO

The possible participation of the nitric oxide (NO)-cyclic GMP-protein kinase G (PKG)-K+ channels pathway in the antiallodynic action of resveratrol and YC-1 in spinal nerve injured rats was assessed. Ligation of L5/L6 spinal nerves produced a clear-cut tactile allodynia in the rats. Intrathecal administration of resveratrol (100-600 microg) and 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (0.1-2.7 microg, YC-1, a soluble guanylyl cyclase activator) decreased tactile allodynia induced by ligation of L5/L6 spinal nerves. Intrathecal treatment with NG-L-nitro-arginine methyl ester (10-100 microg, L-NAME, a NO synthase inhibitor), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (1-10 microg, ODQ, a soluble guanylyl cyclase inhibitor), KT-5823 (5-500 ng, a PKG inhibitor) and iberiotoxin (5-500 ng, a large-conductance Ca2+ -activated K+ channel blocker), but not NG-D-nitro-arginine methyl ester (100 microg, D-NAME, an inactive isomer of L-NAME), glibenclamide (12.5-50 microg, ATP-sensitive K+ channel blocker) or vehicle, significantly diminished resveratrol (300 microg)- and YC-1 (2.7 microg)-induced spinal antiallodynia. These effects were independent of prostaglandin synthesis inhibition as indomethacin did not affect resveratrol-induced antiallodynia. Results suggest that resveratrol and YC-1 could activate the proteins of the NO-cyclic GMP-PKG spinal pathway or large-conductance Ca2+ -activated, but not ATP-sensitive, K+ channels at the spinal cord in order to produce at least part of their antiallodynic effect in this model of neuropathy.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/química , Potássio/química , Estilbenos/farmacologia , Animais , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Feminino , Glibureto/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Peptídeos/farmacologia , Ratos , Ratos Wistar , Resveratrol , Coluna Vertebral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA