Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 91(5): e0055822, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37039653

RESUMO

Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4+ and CD8+ T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8+ T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.


Assuntos
Antirretrovirais , Modelos Animais de Doenças , Macaca , Mycobacterium tuberculosis , Vírus da Imunodeficiência Símia , Tuberculose , Humanos , Pré-Escolar , Criança , Animais , Tuberculose/complicações , Tuberculose/imunologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Linfócitos T/imunologia , Antirretrovirais/administração & dosagem , Mycobacterium tuberculosis/fisiologia
2.
Immunity ; 55(5): 827-846.e10, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35483355

RESUMO

Mycobacterium tuberculosis lung infection results in a complex multicellular structure: the granuloma. In some granulomas, immune activity promotes bacterial clearance, but in others, bacteria persist and grow. We identified correlates of bacterial control in cynomolgus macaque lung granulomas by co-registering longitudinal positron emission tomography and computed tomography imaging, single-cell RNA sequencing, and measures of bacterial clearance. Bacterial persistence occurred in granulomas enriched for mast, endothelial, fibroblast, and plasma cells, signaling amongst themselves via type 2 immunity and wound-healing pathways. Granulomas that drove bacterial control were characterized by cellular ecosystems enriched for type 1-type 17, stem-like, and cytotoxic T cells engaged in pro-inflammatory signaling networks involving diverse cell populations. Granulomas that arose later in infection displayed functional characteristics of restrictive granulomas and were more capable of killing Mtb. Our results define the complex multicellular ecosystems underlying (lack of) granuloma resolution and highlight host immune targets that can be leveraged to develop new vaccine and therapeutic strategies for TB.


Assuntos
Mycobacterium tuberculosis , Fibrose Pulmonar , Tuberculose , Animais , Ecossistema , Granuloma , Pulmão , Macaca fascicularis , Fibrose Pulmonar/patologia
3.
J Immunol ; 207(1): 175-188, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145063

RESUMO

Tuberculosis (TB) is the leading infectious cause of death among people living with HIV. People living with HIV are more susceptible to contracting Mycobacterium tuberculosis and often have worsened TB disease. Understanding the immunologic defects caused by HIV and the consequences it has on M. tuberculosis coinfection is critical in combating this global health epidemic. We previously showed in a model of SIV and M. tuberculosis coinfection in Mauritian cynomolgus macaques (MCM) that SIV/M. tuberculosis-coinfected MCM had rapidly progressive TB. We hypothesized that pre-existing SIV infection impairs early T cell responses to M. tuberculosis infection. We infected MCM with SIVmac239, followed by coinfection with M. tuberculosis Erdman 6 mo later. Although similar, TB progression was observed in both SIV+ and SIV-naive animals at 6 wk post-M. tuberculosis infection; longitudinal sampling of the blood (PBMC) and airways (bronchoalveolar lavage) revealed a significant reduction in circulating CD4+ T cells and an influx of CD8+ T cells in airways of SIV+ animals. At sites of M. tuberculosis infection (i.e., granulomas), SIV/M. tuberculosis-coinfected animals had a higher proportion of CD4+ and CD8+ T cells expressing PD-1 and TIGIT. In addition, there were fewer TNF-producing CD4+ T cells in granulomas of SIV/M. tuberculosis-coinfected animals. Taken together, we show that concurrent SIV infection alters T cell phenotypes in granulomas during the early stages of TB disease. As it is critical to establish control of M. tuberculosis replication soon postinfection, these phenotypic changes may distinguish the immune dysfunction that arises from pre-existing SIV infection, which promotes TB progression.


Assuntos
Granuloma/imunologia , Mycobacterium tuberculosis/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Biomarcadores/análise , Linfócitos T CD8-Positivos/imunologia , Macaca , Vírus da Imunodeficiência Símia/imunologia
4.
Front Immunol ; 11: 891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477361

RESUMO

In 2017 over 550,000 estimated new cases of multi-drug/rifampicin resistant tuberculosis (MDR/RR-TB) occurred, emphasizing a need for new treatment strategies. Linezolid (LZD) is a potent antibiotic for drug-resistant Gram-positive infections and is an effective treatment for TB. However, extended LZD use can lead to LZD-associated host toxicities, most commonly bone marrow suppression. LZD toxicities may be mediated by IL-1, an inflammatory pathway important for early immunity during M. tuberculosis infection. However, IL-1 can contribute to pathology and disease severity late in TB progression. Since IL-1 may contribute to LZD toxicity and does influence TB pathology, we targeted this pathway with a potential host-directed therapy (HDT). We hypothesized LZD efficacy could be enhanced by modulation of IL-1 pathway to reduce bone marrow toxicity and TB associated-inflammation. We used two animal models of TB to test our hypothesis, a TB-susceptible mouse model and clinically relevant cynomolgus macaques. Antagonizing IL-1 in mice with established infection reduced lung neutrophil numbers and partially restored the erythroid progenitor populations that are depleted by LZD. In macaques, we found no conclusive evidence of bone marrow suppression associated with LZD, indicating our treatment time may have been short enough to avoid the toxicities observed in humans. Though treatment was only 4 weeks (the FDA approved regimen at the time of study), we observed sterilization of the majority of granulomas regardless of co-administration of the FDA-approved IL-1 receptor antagonist (IL-1Rn), also known as Anakinra. However, total lung inflammation was significantly reduced in macaques treated with IL-1Rn and LZD compared to LZD alone. Importantly, IL-1Rn administration did not impair the host response against Mtb or LZD efficacy in either animal model. Together, our data support that inhibition of IL-1 in combination with LZD has potential to be an effective HDT for TB and the need for further research in this area.


Assuntos
Antibacterianos/uso terapêutico , Interleucina-1beta/antagonistas & inibidores , Linezolida/uso terapêutico , Tuberculose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Inflamação , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA