Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(31): 21521-21536, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37469962

RESUMO

Carcinogenic colorectal hemorrhage can cause severe blood loss and longitudinal ulcer, which ultimately become fatal if left untreated. The present study was aimed to formulate targeted release gemcitabine (GC)-containing magnetic microspheres (MM) of halloysite nanotubes (MHMG), chitosan (MCMG), and their combination (MHCMG). The preparation of MM by magnetism was confirmed by vibrating sample magnetometry (VSM), the molecular arrangement of NH2, alumina, and silica groups was studied by X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS), the hollow spherical nature of the proposed MM was observed by scanning electron microscopy (SEM), functional groups were characterized by Fourier transform infrared (FTIR) spectroscopy and thermochemical modification was studied by thermogravimetric analysis (TGA). In vitro thrombus formation showed a decreasing trend of hemostatic time for MMs in the order of MHMG3 < MCMG3 < MHCMG7, which was confirmed by whole blood clotting kinetics. Interestingly, rat tail amputation and liver laceration showed 3 folds increased clotting efficiency of optimized MHCMG7 compared to that of control. In vivo histopathological studies and cell viability assays confirmed the regeneration of epithelial cells. The negligible systemic toxicity of MHCMG7, more than 90% entrapment of GC and high % release in alkaline medium made the proposed MM an excellent candidate for the control of hemorrhage in colorectal cancer. Conclusively, the healing of muscularis and improved recovery of the colon from granulomas ultimately improved the therapeutic effects of GC-containing MMs. The combination of both HNT and CTS microspheres made them more targeted.

2.
AAPS PharmSciTech ; 24(6): 141, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349629

RESUMO

Inhibition of melanogenesis by quercetin and vitamin E is extensively reported in the literature, independently, with limitations in antioxidant potential owing to less permeation, solubility, decreased bioavailability, and reduced stability. Thus, the aim of the present study was to synthesize a novel complex of metal ions (copper and zinc) with quercetin to enhance antioxidant properties which were confirmed by docking studies. Polycaprolactone-based nanoparticles of the synthesized complex (PCL-NPs, Q-PCL-NPs, Zn-Q-PCL-NPs, Cu-Q-PCL-NPs) were made later loaded with vitamin E which made the study more interesting in enhancing antioxidant profile. Nanoparticles were characterized for zeta size, charge, and polydispersity index, while physiochemical analysis of nanoparticles was strengthened by FTIR. Cu-Q-PCL-NPs-E showed maximum in vitro release of vitamin E, i.e., 80 ± 0.54%. Non-cellular antioxidant effect by 2,2-diphenyl-1-picrylhydrazyl was observed at 93 ± 0.23% in Cu-Q-PCL-NPs-E which was twofold as compared to Zn-Q-PCL-NPs-E. Michigan Cancer Foundation-7 (MCF-7) cancer cell lines were used to investigate the anticancer and cellular antioxidant profile of loaded and unloaded nanoparticles. Results revealed reactive oxygen species activity of 90 ± 0.32% with the addition of 89 ± 0.64% of its anticancer behavior shown by Cu-Q-PCL-NPs-E after 6 and 24h. Similarly, 80 ± 0.53% inhibition of melanocyte cells and 95 ± 0.54% increase of keratinocyte cells were also shown by Cu-Q-PCL-NPs-E that confirmed the tyrosinase enzyme inhibitory effect. Conclusively, the use of zinc and copper complex in unloaded and vitamin E-loaded nanoparticles can provide enhanced antioxidant properties with inhibition of melanin, which can be used for treating diseases of melanogenesis.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Antioxidantes/farmacologia , Vitamina E/química , Quercetina/farmacologia , Cobre , Nanopartículas/química
3.
Polym Bull (Berl) ; 80(1): 241-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35125574

RESUMO

Flavonoids are present naturally in many fruits and vegetables including onions, apples, tea, cabbage, cauliflower, berries and nuts which provide us with quercetin, a powerful natural antioxidant and cytotoxic compound. Due to antioxidant property, many nutraceuticals and cosmeceuticals products contain quercetin as a major ingredient nowadays. Current review enlightened sources and quercetin's role as an antioxidant, antimicrobial, antidiabetic, anticancerous and anti-inflammatory agent in medical field during last 5 to 6 years. Literature search was systematically done using scientific for the published articles of quercetin. A total of 345 articles were reviewed, and it was observed that more than 40% of articles were about quercetin's use as an antioxidant agent, more than 25% of studies were about its use as an anticancer agent, and articles on antimicrobial activity were more than 15%. 10% of the articles showed anti-inflamamatory effects of quercetin. Literature search also revealed that quercetin alone and its complexes with chitosan, metal ions and polymers possessed good antidiabetic properties. Thus, the review focuses on new therapeutic interventions and drug delivery system of quercetin in medical field for the benefit of mankind.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA