Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569294

RESUMO

Cancer cells show several metabolic phenotypes depending on the cancer types and the microenvironments in tumor tissues. The glycolytic phenotype is one of the hallmarks of cancer cells and is considered to be one of the crucial features of malignant cancers. Here, we show glycolytic oscillations in the concentrations of metabolites in the glycolytic pathway in two types of cancer cells, HeLa cervical cancer cells and DU145 prostate cancer cells, and in two types of cellular morphologies, spheroids and monolayers. Autofluorescence from nicotinamide adenine dinucleotide (NADH) in cells was used for monitoring the glycolytic oscillations at the single-cell level. The frequencies of NADH oscillations were different among the cellular types and morphologies, indicating that more glycolytic cancer cells tended to exhibit oscillations with higher frequencies than less glycolytic cells. A mathematical model for glycolytic oscillations in cancer cells reproduced the experimental results quantitatively, confirming that the higher frequencies of oscillations were due to the higher activities of glycolytic enzymes. Thus, glycolytic oscillations are expected as a medical indicator to evaluate the malignancy of cancer cells with glycolytic phenotypes.


Assuntos
NAD , Neoplasias do Colo do Útero , Humanos , Feminino , NAD/metabolismo , Glicólise , Células HeLa , Fenótipo , Microambiente Tumoral
2.
FEBS J ; 289(18): 5551-5570, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35395137

RESUMO

Previous studies have unravelled glycolytic oscillations in cancer cells, such as HeLa cervical and DU145 prostate cancer cells, using a monolayer culture system. Here, we demonstrate glycolytic oscillations in HeLa cervical cancer cell spheroids. Experiments revealed that a small number of HeLa cells in spheroids exhibited heterogeneous oscillations with a higher frequency than those in monolayers. Model analyses and our previous experiments indicated that the higher frequencies of oscillations in spheroids were mostly due to the increase in glycolytic enzyme activity in the cells, and to the decrease in glucose concentration by diffusional transport of glucose from the surface to inside the spheroids, as well as the increase in cell density through spheroid formation. These results and our previous studies imply that more malignant cancer cells tend to exhibit glycolytic oscillations with higher frequencies than less malignant cells. Adjacent cells in spheroids oscillated within a 10% difference in frequency, but did not synchronize with each other. This suggests that weak cell-to-cell interactions might exist among HeLa cells connected with cadherins in the spheroid microenvironment; however, the interactions were not strong enough to induce synchronization of glycolytic oscillations.


Assuntos
Neoplasias do Colo do Útero , Caderinas , Feminino , Glucose , Glicólise , Células HeLa , Humanos , Masculino , Esferoides Celulares , Microambiente Tumoral , Neoplasias do Colo do Útero/genética
3.
Front Oncol ; 12: 783908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251968

RESUMO

The grade of malignancy differs among cancer cell types, yet it remains the burden of genetic studies to understand the reasons behind this observation. Metabolic studies of cancer, based on the Warburg effect or aerobic glycolysis, have also not provided any clarity. Instead, the significance of oxidative phosphorylation (OXPHOS) has been found to play critical roles in aggressive cancer cells. In this perspective, metabolic symbiosis is addressed as one of the ultimate causes of the grade of cancer malignancy. Metabolic symbiosis gives rise to metabolic heterogeneities which enable cancer cells to acquire greater opportunities for proliferation and metastasis in tumor microenvironments. This study introduces a real-time new imaging technique to visualize metabolic symbiosis between cancer-associated fibroblasts (CAFs) and cancer cells based on the metabolic oscillations in these cells. The causality of cellular oscillations in cancer cells and CAFs, connected through lactate transport, is a key point for the development of this novel technique.

4.
Chaos ; 29(3): 033132, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927859

RESUMO

Previous experiments demonstrated that a population of HeLa cells starved of glucose or both glucose and serum exhibited a strong heterogeneity in the glycolytic oscillations in terms of the number of oscillatory cells, periods of oscillations, and duration of oscillations. Here, we report numerical simulations of this heterogeneous oscillatory behavior in HeLa cells by using a newly developed mathematical model. It is simple enough that we can apply a mathematical analysis, but capture the core of the glycolytic pathway and the activity of the glucose transporter (GLUT). Lognormal distributions of the values of the four rate constants in the model were obtained from the experimental distributions in the periods of oscillations. Thus, the heterogeneity in the periods of oscillations can be attributed to the difference in the rate constants of the enzymatic reactions. The activity of GLUT is found to determine whether the HeLa cells were oscillatory or non-oscillatory under the same experimental conditions. Simulation with the log-normal distribution of the maximum uptake velocity of glucose and the four randomized rate constants based on the log-normal distributions successfully reproduced the time-dependent number of oscillatory cells (oscillatory ratios) under the two starving conditions. The difference in the initial values of the metabolites has little effect on the simulated results.


Assuntos
Glicólise , Células HeLa/metabolismo , Neoplasias do Colo do Útero/enzimologia , Fenômenos Fisiológicos Celulares , Feminino , Humanos , Modelos Biológicos
6.
Chaos ; 27(10): 104602, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29092451

RESUMO

We report the first direct observation of glycolytic oscillations in HeLa cervical cancer cells, which we regard as primordial oscillations preserved in living cells. HeLa cells starved of glucose or both glucose and serum exhibited glycolytic oscillations in nicotinamide adenine dinucleotide (NADH), exhibiting asynchronous intercellular behaviors. Also found were spatially homogeneous and inhomogeneous intracellular NADH oscillations in the individual cells. Our results demonstrate that starved HeLa cells may be induced to exhibit glycolytic oscillations by either high-uptake of glucose or the enhancement of a glycolytic pathway (Crabtree effect or the Warburg effect), or both. Their asynchronous collective behaviors in the oscillations were probably due to a weak intercellular coupling. Elucidation of the relationship between the mechanism of glycolytic dynamics in cancer cells and their pathophysiological characteristics remains a challenge in future.


Assuntos
Glicólise , Neoplasias do Colo do Útero/metabolismo , Feminino , Fluorescência , Células HeLa , Humanos , NAD/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA