Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118235, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38648891

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Astragalus mongholicus Bunge (AM, recorded in http://www.worldfloraonline.org, 2023-08-03) is a kind of medicine food homology plant with a long medicinal history in China. Astragaloside III (AS-III) has immunomodulatory effects and is one of the most active components in AM. However, its underlying mechanism of action is still not fully explained. AIM OF THE STUDY: The research was designed to discuss the protective effects of AS-III on immunosuppression and to elucidate its prospective mechanism. MATERIALS AND METHODS: Molecular docking methods and network pharmacology analysis were used to comprehensively investigate potential targets and relative pathways for AS-III and immunosuppression. In order to study and verify the pharmacological activity and mechanism of AS-III in alleviating immunosuppression, immunosuppression mouse model induced by cyclophosphamide (CTX) in vivo and macrophage RAW264.7 cell model induced by hypoxia/lipopolysaccharide (LPS) in vitro were used. RESULTS: A total of 105 common targets were obtained from the AS-III-related and immunosuppression-related target networks. The results of network pharmacology and molecular docking demonstrate that AS-III may treat immunosuppression through by regulating glucose metabolism-related pathways such as regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, cGMP-PKG signaling pathway, central carbon metabolism in cancer together with HIF-1 pathway. The results of molecular docking showed that AS-III has good binding relationship with LDHA, AKT1 and HIF1A. In CTX-induced immunosuppressive mouse model, AS-III had a significant protective effect on the reduction of body weight, immune organ index and hematological indices. It can also protect immune organs from damage. In addition, AS-III could significantly improve the expression of key proteins involved in energy metabolism and serum inflammatory factors. To further validate the animal results, an initial inflammatory/immune response model of macrophage RAW264.7 cells was constructed through hypoxia and LPS. AS-III improved the immune function of macrophages, reduced the release of NO, TNF-α, IL-1ß, PDHK-1, LDH, lactate, HK, PK and GLUT-1, and restored the decrease of ATP caused by hypoxia. Besides, AS-III was also demonstrated that it could inhibit the increase of HIF-1α, PDHK-1 and LDH by adding inhibitors and agonists. CONCLUSIONS: In this study, the main targets of AS-III for immunosuppressive therapy were initially analyzed. AS-III was systematically confirmed to attenuates immunosuppressive state through the HIF-1α/PDHK-1 pathway. These findings offer an experimental foundation for the use of AS-III as a potential candidate for the treatment of immunosuppression.


Assuntos
Simulação de Acoplamento Molecular , Farmacologia em Rede , Saponinas , Animais , Camundongos , Células RAW 264.7 , Saponinas/farmacologia , Lipopolissacarídeos , Masculino , Ciclofosfamida/farmacologia , Imunossupressores/farmacologia , Triterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Astrágalo/química
2.
Heliyon ; 10(3): e25321, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352795

RESUMO

This study aimed to investigate the potential use of okra and psyllium mucilage as co-carrier wall materials with whey protein and gum Arabic polymers for encapsulation of fenugreek oil to mask its undesirable flavor and promote their health benefits. Particle size, zeta potential, encapsulation efficiency, morphological properties and fatty acid profiles of crude and encapsulated oils were examined using zeta-sizer, SEM and GC-MS techniques. Crude and encapsulated fenugreek oils were added as functional ingredients during production of pan bread and biscuits. The quality characteristics (baking quality, color and organoleptic properties) of bread and biscuits as well as microbiological properties of bred samples were evaluated. Results showed that the forming microcapsules had sphere particles with the size of 5.05 and 31.64 µm for okra and pysillium mucilage, respectively and had smooth continuous surfaces with no holes or fractures. Fatty acids analysis showed that fenugreek oil is superior functional edible oil, rich in unsaturated fatty acids. The organoleptic properties of products were improved when fat replaced with encapsulated fenugreek oil with okra or psyllium mucilage. Likewise, encapsulated fenugreek oil showed antimicrobial activity in bread samples during storage period. On contrary, Bread and biscuits incorporated with crude fenugreek oil gained the lowest scores for all organoleptic parameters. Regarding these results, encapsulated fenugreek oil presents good fat alternatives in dough formulations with acceptable technological, sensory and antimicrobial properties. However, further investigations still needed regarding the biological activity of encapsulated fenugreek oil and its utilization as a food supplement in other food products.

3.
Sci Rep ; 12(1): 22302, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566273

RESUMO

Root-knot nematode is one of the major problems that face the agricultural production of several vegetable crops. Chemical nematicides have been banned because of their healthy and environmental undesirable attributes. So, this study aimed to evaluate the potential use of sweet annie (Artimisia annua) and garden cress (Lepidium sativum) as green routes for the development of effective and eco-friendly alternative nematicides. Nematicidal activity of sweet annie and garden cress aqueous extracts (500 g/L) in the original and nano-forms were evaluated against Meloidogyne incognita in tomato planted in infected soil under greenhouse conditions. Nineteen phenolic compounds were identified in A. annua extract, which was dominated by chlorogenic acid (5059 µg/100 mL), while 11 compounds were identified in L. sativum extract, that dominated by p-hydroxybenzoic acid (3206 µg/100 mL). Nano-particles were characterized with smooth surface, spherical shape and small size (50-100 nm). Under laboratory, the nano-formulations showed mortality percentage of M. incognita J2 greater than the original extract from. Vegetative growth parameters of tomato plants treated with A. annua and L. sativum extracts significantly improved compared to the control plants. Also, biochemical analysis revealed that the extracts were able to induce tomato plants towards the accumulation of phenolic compounds and increasing the activity of defensive enzymes (protease, polyphenol oxidase and chitinase) resulting in systemic resistance. Regarding tomato fruits yield and quality, the studied treatments significantly improved the yield and physicochemical parameters of tomato fruits in terms of fruit weight, diameter, TSS, pH, lycopene content and color attributes gaining higher sensorial acceptance by the panelist. Generally, both extracts represent promising nematicide alternatives and have potential use in crop management. The nano-form of A. annua extract outperformed the nematicidal activity of other studied treatments.


Assuntos
Artemisia annua , Solanum lycopersicum , Tylenchoidea , Animais , Lepidium sativum , Frutas , Antinematódeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA