Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(7): 2328-2339, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38734900

RESUMO

Human T cell leukemia/T-lymphotropic virus type 1 (HTLV-1) infection occurs by cell-to-cell transmission and can induce fatal adult T cell leukemia. Vaccine development is critical for the control of HTLV-1 transmission. However, determining whether vaccine-induced anti-Env antibodies can prevent cell-to-cell HTLV-1 transmission is challenging. Here, we examined the protective efficacy of a vaccine inducing anti-Env antibodies against HTLV-1 challenge in cynomolgus macaques. Eight of 10 vaccinated macaques produced anti-HTLV-1 neutralizing antibodies (NAbs) and were protected from an intravenous challenge with 108 HTLV-1-producing cells. In contrast, the 2 vaccinated macaques without NAb induction and 10 unvaccinated controls showed HTLV-1 infection with detectable proviral load after challenge. Five of the eight protected macaques were administered with an anti-CD8 monoclonal antibody, but proviruses remained undetectable and no increase in anti-HTLV-1 antibodies was observed even after CD8+ cell depletion in three of them. Analysis of Env-specific T cell responses did not suggest involvement of vaccine-induced Env-specific T cell responses in the protection. These results indicate that anti-Env antibody induction by vaccination can result in functionally sterile HTLV-1 protection, implying the rationale for strategies aimed at anti-Env antibody induction in prophylactic HTLV-1 vaccine development.


Assuntos
Anticorpos Neutralizantes , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Vacinação , Animais , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/prevenção & controle , Anticorpos Neutralizantes/imunologia , Humanos , Macaca fascicularis , Carga Viral , Linfócitos T CD8-Positivos/imunologia , Produtos do Gene env/imunologia , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Modelos Animais de Doenças
2.
Microbiol Spectr ; 11(4): e0151823, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37367230

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) induces chronic asymptomatic latent infection with a substantial proviral load but without significant viral replication in vivo. Cumulative studies have indicated involvement of CD8-positive (CD8+) cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. However, whether HTLV-1 expression from latently infected cells in vivo occurs in the absence of CD8+ cells remains unclear. Here, we examined the impact of CD8+ cell depletion by monoclonal anti-CD8 antibody administration on proviral load in HTLV-1-infected cynomolgus macaques. Five cynomolgus macaques were infected with HTLV-1 by inoculation with HTLV-1-producing cells. Administration of monoclonal anti-CD8 antibody in the chronic phase resulted in complete depletion of peripheral CD8+ T cells for approximately 2 months. All five macaques showed an increase in proviral load following CD8+ cell depletion, which peaked just before the reappearance of peripheral CD8+ T cells. Tax-specific CD8+ T-cell responses were detected in these recovered CD8+ T cells. Importantly, anti-HTLV-1 antibodies also increased after CD8+ cell depletion, indicating HTLV-1 antigen expression. These results provide evidence indicating that HTLV-1 can proliferate from the latent phase in the absence of CD8+ cells and suggest that CD8+ cells are responsible for the control of HTLV-1 replication. IMPORTANCE HTLV-1 can cause serious diseases such as adult T-cell leukemia (ATL) in humans after chronic asymptomatic latent infection with substantial proviral load. Proviruses are detectable in peripheral lymphocytes in HTLV-1 carriers, and the association of a higher proviral load with a higher risk of disease progression has been observed. However, neither substantial viral structural protein expression nor viral replication was detectable in vivo. Cumulative studies have indicated involvement of CD8+ cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. In the present study, we showed that CD8+ cell depletion by monoclonal anti-CD8 antibody administration results in HTLV-1 expression and an increase in proviral load in HTLV-1-infected cynomolgus macaques. Our results indicate that HTLV-1 can proliferate in the absence of CD8+ cells, suggesting that CD8+ cells are responsible for the control of HTLV-1 replication. This study provides insights into the mechanism of virus-host immune interaction in latent HTLV-1 infection.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Infecção Latente , Adulto , Animais , Humanos , Linfócitos T CD8-Positivos , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Provírus , Macaca fascicularis , Proliferação de Células , Carga Viral
3.
Viruses ; 15(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37376622

RESUMO

A Japanese rabbit hepatitis E virus (HEV) strain, JP-59, has been identified in a feral rabbit. When this virus was transmitted to a Japanese white rabbit, it caused persistent HEV infection. The JP-59 strain shares an <87.5% nucleotide sequence identity with other rabbit HEV strains. Herein, to isolate JP-59 by cell culture, we used a 10% stool suspension recovered from a JP-59-infected Japanese white rabbit and contained 1.1 × 107 copies/mL of the viral RNA and using it to infect a human hepatocarcinoma cell line, PLC/PRF/5. No sign of virus replication was observed. Although long-term virus replication was observed in PLC/PRF/5 cells inoculated with the concentrated and purified JP-59 containing a high titer of viral RNA (5.1 × 108 copies/mL), the viral RNA of JP-59c that was recovered from the cell culture supernatants was <7.1 × 104 copies/mL during the experiment. The JP-59c strain did not infect PLC/PRF/5 cells, but its intravenous inoculation caused persistent infection in rabbits. The nucleotide sequence analyses of the virus genomes demonstrated that a total of 18 nucleotide changes accompanying three amino acid mutations occurred in the strain JP-59c compared to the original strain JP-59. These results indicate that a high viral RNA titer was required for JP-59 to infect PLC/PRF/5 cells, but its replication capability was extremely low. In addition, the ability of rabbit HEVs to multiply in PLC/PRF/5 cells varied depending on the rabbit HEV strains. The investigations of cell lines that are broadly susceptible to rabbit HEV and that allow the efficient propagation of the virus are thus needed.


Assuntos
Vírus da Hepatite E , Cultura de Vírus , Replicação Viral , Animais , Humanos , Coelhos , Hepatite E/veterinária , Vírus da Hepatite E/fisiologia , RNA Viral/genética , RNA Viral/análise , Linhagem Celular Tumoral
4.
Viruses ; 13(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34452436

RESUMO

Rabbit hepatitis E virus (HEV) is a novel HEV belonging to genotype 3 (HEV-3) in the Orthohepevirus A species of the genus Hepevirus, family Hepeviridae. Rabbit HEV was originally isolated from rabbits and found to cause zoonotic infection. Although rabbit HEV can be successfully grown in culture with several cell lines, including the human carcinoma cell line PLC/PRF/5, it is difficult to obtain the large amounts of viral antigen required for diagnosis and vaccine development. In this study, we expressed N-terminal 13 and 111 aa-truncated rabbit HEV ORF2 proteins using recombinant baculoviruses and obtained two types of virus-like particles (VLPs), RnVLPs and RsVLPs with ~35 and 24 nm diameter, respectively. Anti-rabbit HEV IgG antibodies were induced in high titer by immunizing rabbits with RnVLPs or RsVLPs. The antibody secretion in the serum persisted more than three years. RsVLPs showed stronger antigenic cross-reactivity against HEV-1, HEV-3 and HEV-4 than rat HEV. Moreover, anti-RsVLPs antibodies neutralized not only the cognate virus but also HEV-1, HEV-3 and HEV-4 ex vivo, indicating that rabbit HEV had the same serotype as human HEVs. In contrast, the antibody did not block rat HEV infection, demonstrating that rat HEV belonged to a different serotype. Animal experiments indicated that immunization with either RnVLPs or RsVLPs completely protected the rabbits from challenge by rabbit HEV, suggesting that the VLPs are candidates for rabbit HEV vaccine development.


Assuntos
Anticorpos Antivirais/sangue , Baculoviridae/genética , Vírus da Hepatite E/imunologia , Hepatite E/prevenção & controle , Imunogenicidade da Vacina , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas Virais/imunologia , Animais , Feminino , Hepatite E/imunologia , Vírus da Hepatite E/genética , Imunoglobulina G/sangue , Coelhos , Desenvolvimento de Vacinas , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Proteínas Virais/administração & dosagem , Proteínas Virais/genética
5.
Sci Rep ; 9(1): 20221, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882888

RESUMO

We isolated a novel simian sapelovirus (SSV), Cam13, from fecal specimen of a cynomolgus monkey by using PLC/PRF/5 cells. The SSV infection of the cells induced an extensive cytopathic effect. Two types of virus particles with identical diameter (~32 nm) but different densities (1.348 g/cm3 and 1.295 g/cm3) were observed in the cell culture supernatants. The RNA genome of Cam13 possesses 8,155 nucleotides and a poly(A) tail, and it has a typical sapelovirus genome organization consisting of a 5' terminal untranslated region, a large open reading frame (ORF), and a 3' terminal untranslated region. The ORF encodes a single polyprotein that is subsequently processed into a leader protein (L), four structural proteins (VP1, VP2, VP3, and VP4) and seven functional proteins (2A, 2B, 2C, 3A, 3B, 3C, and 3D). We confirmed that 293 T, HepG2/C3A, Hep2C, Huh7 and primary cynomolgus monkey kidney cells were susceptible to SSV infection. In contrast, PK-15, Vero, Vero E6, RD-A, A549, and primary green monkey kidney cells were not susceptible to SSV infection. We established an ELISA for the detection of IgG antibodies against SSV by using the virus particles as the antigen. A total of 327 serum samples from cynomolgus monkeys and 61 serum samples from Japanese monkeys were examined, and the positive rates were 88.4% and 18%, respectively. These results demonstrated that SSV infection occurred frequently in the monkeys. Since Cam13 shared 76.54%-79.52% nucleotide sequence identities with other known SSVs, and constellated in a separate lineage in the phylogeny based on the entire genome sequence, we propose that Cam13 is a new genotype of the simian sapelovirus species.


Assuntos
Fezes/virologia , Genoma Viral/genética , Macaca fascicularis/virologia , Picornaviridae/genética , Vírion/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Células A549 , Animais , Sequência de Bases/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Células Hep G2 , Humanos , Fases de Leitura Aberta/genética , Filogenia , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Análise de Sequência de DNA/métodos , Células Vero , Vírion/isolamento & purificação
6.
Sci Rep ; 9(1): 11990, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427690

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by the SFTS phlebovirus (SFTSV). SFTS patients were first reported in China, followed by Japan and South Korea. In 2017, cats were diagnosed with SFTS for the first time, suggesting that these animals are susceptible to SFTSV. To confirm whether or not cats were indeed susceptible to SFTSV, animal subjects were experimentally infected with SFTSV. Four of the six cats infected with the SPL010 strain of SFTSV died, all showing similar or more severe symptoms than human SFTS patients, such as a fever, leukocytopenia, thrombocytopenia, weight loss, anorexia, jaundice and depression. High levels of SFTSV RNA loads were detected in the serum, eye swab, saliva, rectal swab and urine, indicating a risk of direct human infection from SFTS-infected animals. Histopathologically, acute necrotizing lymphadenitis and hemophagocytosis were prominent in the lymph nodes and spleen. Severe hemorrhaging was observed throughout the gastrointestinal tract. B cell lineage cells with MUM-1 and CD20, but not Pax-5 in the lesions were predominantly infected with SFTSV. The present study demonstrated that cats were highly susceptible to SFTSV. The risk of direct infection from SFTS-infected cats to humans should therefore be considered.


Assuntos
Doenças do Gato/virologia , Febres Hemorrágicas Virais/veterinária , Phlebovirus/fisiologia , Animais , Biomarcadores , Biópsia , Doenças do Gato/diagnóstico , Doenças do Gato/mortalidade , Doenças do Gato/transmissão , Gatos , Suscetibilidade a Doenças , Avaliação de Sintomas
7.
J Virol ; 92(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29237838

RESUMO

One of the first defenses against infecting pathogens is the innate immune system activated by cellular recognition of pathogen-associated molecular patterns (PAMPs). Although virus-derived RNA species, especially copyback (cb)-type defective interfering (DI) genomes, have been shown to serve as real PAMPs, which strongly induce interferon-beta (IFN-ß) during mononegavirus infection, the mechanisms underlying DI generation remain unclear. Here, for the first time, we identified a single amino acid substitution causing production of cbDI genomes by successful isolation of two distinct types of viral clones with cbDI-producing and cbDI-nonproducing phenotypes from the stock Sendai virus (SeV) strain Cantell, which has been widely used in a number of studies on antiviral innate immunity as a representative IFN-ß-inducing virus. IFN-ß induction was totally dependent on the presence of a significant amount of cbDI genome-containing viral particles (DI particles) in the viral stock, but not on deficiency of the IFN-antagonistic viral accessory proteins C and V. Comparison of the isolates indicated that a single amino acid substitution found within the N protein of the cbDI-producing clone was enough to cause the emergence of DI genomes. The mutated N protein of the cbDI-producing clone resulted in a lower density of nucleocapsids than that of the DI-nonproducing clone, probably causing both production of the DI genomes and their formation of a stem-loop structure, which serves as an ideal ligand for RIG-I. These results suggested that the integrity of mononegaviral nucleocapsids might be a critical factor in avoiding the undesirable recognition of infection by host cells.IMPORTANCE The type I interferon (IFN) system is a pivotal defense against infecting RNA viruses that is activated by sensing viral RNA species. RIG-I is a major sensor for infection with most mononegaviruses, and copyback (cb)-type defective interfering (DI) genomes have been shown to serve as strong RIG-I ligands in real infections. However, the mechanism underlying production of cbDI genomes remains unclear, although DI genomes emerge as the result of an error during viral replication with high doses of viruses. Sendai virus has been extensively studied and is unique in that its interaction with innate immunity reveals opposing characteristics, such as high-level IFN-ß induction and strong inhibition of type I IFN pathways. Our findings provide novel insights into the mechanism of production of mononegaviral cbDI genomes, as well as virus-host interactions during innate immunity.


Assuntos
Substituição de Aminoácidos/imunologia , Vírus Defeituosos/genética , Interferon beta/metabolismo , Nucleoproteínas/imunologia , Paramyxovirinae/genética , Paramyxovirinae/imunologia , Vírus Sendai/genética , Substituição de Aminoácidos/genética , Animais , Linhagem Celular , Proteína DEAD-box 58 , Vírus Defeituosos/imunologia , Feminino , Regulação da Expressão Gênica , Genoma Viral , Células HeLa , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/análise , Interferon Tipo I/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Nucleocapsídeo/metabolismo , Nucleoproteínas/genética , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , RNA Viral/genética , Receptores Imunológicos , Vírus Sendai/imunologia , Replicação Viral
8.
J Hepatol ; 65(6): 1104-1111, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27449916

RESUMO

BACKGROUND & AIMS: The pathogenicity, epidemiology and replication mechanism of dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus (HEV), has been unclear. Here we used a reverse genetic system to produce DcHEV and examined the possibility of zoonotic infection. METHODS: Capped genomic RNA derived from a synthetic DcHEV cDNA was transfected into human hepatocarcinoma cells PLC/PRF/5. The DcHEV capsid protein and RNA were detected by an enzyme-linked immunosorbent assay (ELISA) or RT-qPCR. A neutralization test for DcHEV was carried out by using antisera against HEV-like particles. DcHEV was used to inoculate two cynomolgus monkeys to examine the potential for cross-species infection. RESULTS: The transfection of PLC/PRF/5 cells with capped DcHEV RNA resulted in the production of infectious DcHEV. The genome sequence analysis demonstrated that both nucleotide and amino acid changes accumulated during the passages in PLC/PRF/5 cells. The cynomolgus monkeys showed serological signs of infection when DcHEV was intravenously inoculated. DcHEV was neutralized by not only anti-DcHEV-LPs antibody, but also anti-genotype 1 (G1), G3 and G4 HEV-LPs antibodies. Moreover, the monkeys immunized with DcHEV escaped the G3 HEV challenge, indicating that the serotype of DcHEV is similar to those of other human HEVs. CONCLUSIONS: Infectious DcHEV was produced using a reverse genetic system and propagated in PLC/PRF/5 cells. The antigenicity and immunogenicity of DcHEV are similar to those of G1, G3 and G4 HEV. DcHEV was experimentally transmitted to primates, demonstrating the possibility of a zoonotic infection by DcHEV. LAY SUMMARY: Dromedary camel hepatitis E virus (DcHEV) was produced by a reverse genetic system and grows well in PLC/PRF/5 cells. Cynomolgus monkeys experimentally infected with DcHEV indicated serological signs of infection, suggesting that DcHEV has the potential to cause zoonotic HEV infection.


Assuntos
Vírus da Hepatite E , Animais , Camelus , Ensaio de Imunoadsorção Enzimática , Hepatite E , Humanos , Genética Reversa , Zoonoses
9.
Vaccine ; 34(9): 1201-7, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26802605

RESUMO

INTRODUCTION: Recently, we reported that intranasal vaccination of humans with whole inactivated influenza vaccine in the absence of mucosal adjuvant induced neutralizing antibody responses in the serum and nasal mucus. The mucoadhesive excipient carboxy-vinyl polymer (CVP) increases the viscosity and therefore mucoadhesiveness of intranasal medicaments and is an authorized excipient in Japan. In the present study, we analyzed the effect of adding CVP on intranasal whole inactivated influenza vaccine antigen dynamics and antibody responses. METHODS: Mice and nonhuman primates (NHPs) were intranasally administered the [(18)F]-radiolabeled vaccine and subjected to positron emission tomography analysis for 6h. Dendritic cells were stimulated in vitro with the vaccine mixed with or without a mucosal adjuvant (Ampligen) and/or CVP, after which the tumor necrosis factor (TNF)-α and interferon (IFN)-ß levels in the supernatants were measured. Cynomolgus monkeys were immunized intranasally with the vaccine mixed with Ampligen and/or CVP and their vaccine-specific serum IgG and IgA titers were measured on days 0 and 33. RESULTS: The vaccine was retained significantly longer in the nasal cavity of both mice and NHPs when it was delivered with CVP rather than PBS. Accumulation of the radiolabeled vaccine in the central nervous system was not detected in either model regardless of whether CVP was used. CVP only very weakly increased the TNF-α production of vaccine-stimulated dendritic cells. IFN-ß production was not observed regardless of the presence or absence of CVP. CVP increased the vaccine-specific IgA antibody responses of the intranasally vaccinated cynomolgus macaques. CONCLUSION: CVP increased intranasal retention of whole inactivated influenza vaccine, did not promote antigen redirection to the central nervous system, and improved mucosal antibody responses. The mechanism probably relates to its mucoadhesive properties rather than its ability to directly stimulate the immune system. Intranasal vaccines with CVP may be a promising candidate vaccine formulation for humans.


Assuntos
Excipientes/farmacologia , Imunidade Humoral , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Células Dendríticas/imunologia , Feminino , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Vírus da Influenza A Subtipo H1N1 , Interferon beta/imunologia , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Poli I-C/farmacologia , Poli U/farmacologia , Fator de Necrose Tumoral alfa/imunologia , Vacinação/métodos , Vacinas de Produtos Inativados/administração & dosagem
10.
Virus Res ; 213: 283-288, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26763355

RESUMO

A strain of ferret hepatitis E virus (HEV), sF4370, isolated from an imported ferret was used to inoculate a human hepatocarcinoma cell line, PLC/PRF/5. The virus genome and capsid protein were detected in the cell culture supernatant. Immunofluorescence microscopy indicated that the capsid protein was located in the cytoplasm. The virus particles were purified from the culture supernatant by sucrose gradient ultracentrifugation. The capsid protein with molecular mass of ∼72 kDa was detected in fractions with density of 1.150-1.162 g/cm(3), and particles of ferret HEV was associated with cell membrane. The virus recovered from the supernatant was serially passaged with PLC/PRF/5 cells and had the ability to infect ferrets by oral inoculation, indicating that the ferret HEV grown in PLC/PRF/5 was infectious. The establishment of ferret HEV cell culture system might be useful to understand the life cycle, mechanism of infection and replication of ferret HEV.


Assuntos
Vírus da Hepatite E/crescimento & desenvolvimento , Hepatócitos/virologia , Animais , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/química , Linhagem Celular Tumoral , Membrana Celular/virologia , Centrifugação com Gradiente de Concentração , Meios de Cultura/química , Citoplasma/química , Furões , Hepatite E/veterinária , Hepatite E/virologia , Vírus da Hepatite E/isolamento & purificação , Vírus da Hepatite E/fisiologia , Humanos , Microscopia de Fluorescência , Peso Molecular , RNA Viral/análise , Vírion/isolamento & purificação
11.
J Virol ; 87(21): 11930-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966399

RESUMO

Here, we show that human parainfluenza viruses and Sendai virus (SeV), like other respiratory viruses, use TMPRSS2 for their activation. The membrane fusion proteins of respiratory viruses often possess serine and glutamine residues at the P2 and P3 positions, respectively, but these residues were not critical for cleavage by TMPRSS2. However, mutations of these residues affected SeV growth in specific epithelial cell lines, suggesting the importance of these residues for SeV replication in epithelia.


Assuntos
Interações Hospedeiro-Patógeno , Paramyxovirinae/fisiologia , Serina Endopeptidases/metabolismo , Replicação Viral , Animais , Linhagem Celular , Células Epiteliais/virologia , Humanos , Carga Viral , Ensaio de Placa Viral
12.
J Virol ; 87(12): 7170-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23596291

RESUMO

A canine distemper virus (CDV) strain, CYN07-dV, associated with a lethal outbreak in monkeys, used human signaling lymphocyte activation molecule as a receptor only poorly but readily adapted to use it following a P541S substitution in the hemagglutinin protein. Since CYN07-dV had an intrinsic ability to use human nectin-4, the adapted virus became able to use both human immune and epithelial cell receptors, as well as monkey and canine ones, suggesting that CDV can potentially infect humans.


Assuntos
Adaptação Fisiológica/genética , Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Surtos de Doenças , Vírus da Cinomose Canina/metabolismo , Macaca/virologia , Doenças dos Macacos/virologia , Receptores de Superfície Celular/metabolismo , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , Cinomose/epidemiologia , Cinomose/virologia , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/patogenicidade , Cães , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Hemaglutininas Virais/genética , Humanos , Doenças dos Macacos/epidemiologia , Doenças dos Macacos/mortalidade , Receptores Virais/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Células Vero
13.
Arch Virol ; 155(12): 1989-95, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20827493

RESUMO

Porcine epidemic diarrhea virus (PEDV) is the major causative agent of fatal diarrhea in piglets. To study the pathogenic features of PEDV using a mouse model, PEDV with virulence in mice is required. In pursuit of this, we adapted a tissue-culture-passed PEDV MK strain to suckling mouse brains. PEDV obtained after ten passages through the brains (MK-p10) had increased virulence for mice, and its fusion activity in cultured cells exceeded that of the original strain. However, the replication kinetics of MK and MK-p10 did not differ from each other in the brain and in cultured cells. The spike (S) protein of MK-p10 had four amino acid substitutions relative to the original strain. One of these (an H-to-R substitution at residue 1,381) was first detected in PEDV isolated after eight passages, and both this virus (MK-p8) and MK-p10 showed enhanced syncytium formation relative to the original MK strain and viruses isolated after two, four, and six passages, suggesting the possibility that the H-to-R mutation was responsible for this activity. This mutation could be also involved in the increased virulence of PEDV observed for MK-p10.


Assuntos
Adaptação Biológica , Fusão Celular , Vírus da Diarreia Epidêmica Suína/patogenicidade , Substituição de Aminoácidos/genética , Animais , Encéfalo/virologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , Vírus da Diarreia Epidêmica Suína/genética , Gravidez , Inoculações Seriadas , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/genética , Virulência
14.
J Virol ; 84(13): 6654-66, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20410265

RESUMO

Although most inbred mouse strains are highly susceptible to mouse hepatitis virus (MHV) infection, the inbred SJL line of mice is highly resistant to its infection. The principal receptor for MHV is murine CEACAM1 (mCEACAM1). Susceptible strains of mice are homozygous for the 1a allele of mCeacam1, while SJL mice are homozygous for the 1b allele. mCEACAM1a (1a) has a 10- to 100-fold-higher receptor activity than does mCEACAM1b (1b). To explore the hypothesis that MHV susceptibility is due to the different MHV receptor activities of 1a and 1b, we established a chimeric C57BL/6 mouse (cB61ba) in which a part of the N-terminal immunoglobulin (Ig)-like domain of the mCeacam1a (1a) gene, which is responsible for MHV receptor function, is replaced by the corresponding region of mCeacam1b (1b). We compared the MHV susceptibility of these chimeric mice to that of SJL and B6 mice. B6 mice that are homozygous for 1a are highly susceptible to MHV-A59 infection, with a 50% lethal dose (LD(50)) of 10(2.5) PFU, while chimeric cB61ba mice and SJL mice homozygous for 1ba and 1b, respectively, survived following inoculation with 10(5) PFU. Unexpectedly, cB61ba mice were more resistant to MHV-A59 infection than SJL mice as measured by virus replication in target organs, including liver and brain. No infectious virus or viral RNA was detected in the organs of cB61ba mice, while viral RNA and infectious virus were detected in target organs of SJL mice. Furthermore, SJL mice produced antiviral antibodies after MHV-A59 inoculation with 10(5) PFU, but cB61ba mice did not. Thus, cB61ba mice are apparently completely resistant to MHV-A59 infection, while SJL mice permit low levels of MHV-A59 virus replication during self-limited, asymptomatic infection. When expressed on cultured BHK cells, the mCEACAM1b and mCEACAM1ba proteins had similar levels of MHV-A59 receptor activity. These results strongly support the hypothesis that although alleles of mCEACAM1 are the principal determinants of mouse susceptibility to MHV-A59, other as-yet-unidentified murine genes may also play a role in susceptibility to MHV.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Glicoproteínas/metabolismo , Imunidade Inata , Vírus da Hepatite Murina/patogenicidade , Internalização do Vírus , Alelos , Animais , Antígeno Carcinoembrionário/genética , Moléculas de Adesão Celular , Glicoproteínas/genética , Homozigoto , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sobrevida
15.
Blood ; 114(13): 2709-20, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19584402

RESUMO

Adult T-cell leukemia/lymphoma (ATL) is a malignant lymphoproliferative disorder caused by HTLV-I infection. In ATL, chemotherapeutic responses are generally poor, which has suggested the existence of chemotherapy-resistant cancer stem cells (CSCs). To identify CSC candidates in ATL, we have focused on a Tax transgenic mouse (Tax-Tg) model, which reproduces ATL-like disease both in Tax-Tg animals and also after transfer of Tax-Tg splenic lymphomatous cells (SLCs) to nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Using a limiting dilution transplantation, it was estimated that one CSC existed per 10(4) SLCs (0.01%). In agreement with this, we have successfully identified candidate CSCs in a side population (0.06%), which overlapped with a minor population of CD38(-)/CD71(-)/CD117(+) cells (0.03%). Whereas lymphoma did not develop after transplantation of 10(2) SLCs, 10(2) CSCs could consistently regenerate the original lymphoma. In addition, lymphoma and CSCs could also be demonstrated in the bone marrow and CD117(+) CSCs were observed in both osteoblastic and vascular niches. In the CSCs, Tax, Notch1, and Bmi1 expression was down-regulated, suggesting that the CSCs were derived from Pro-T cells or early hematopoietic progenitor cells. Taken together, our data demonstrate that CSCs certainly exist and have the potential to regenerate lymphoma in our mouse model.


Assuntos
Genes pX , Leucemia-Linfoma de Células T do Adulto/patologia , Células-Tronco Neoplásicas/patologia , Animais , Biomarcadores Tumorais/análise , Modelos Animais de Doenças , Genes pX/fisiologia , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Linfoma/patologia , Proteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Modelos Biológicos , Neoplasias Esplênicas/patologia , Transplante Heterólogo , Células Tumorais Cultivadas
16.
Microbiol Immunol ; 53(2): 75-82, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19291090

RESUMO

We evaluated the efficacy of three SARS vaccine candidates in a murine SARS model utilizing low-virulence Pp and SARS-CoV coinfection. Vaccinated mice were protected from severe respiratory disease in parallel with a low virus titer in the lungs and a high neutralizing antibody titer in the plasma. Importantly, the administration of spike protein-specific neutralizing monoclonal antibody protected mice from the disease, indicating that the neutralization is sufficient for protection. Moreover, a high level of IL-6 and MCP-1 production, but not other 18 cytokines tested, on days 2 and 3 after SARS-CoV infection was closely linked to the virus replication and disease severity, suggesting the importance of these cytokines in the lung pathogenicity of SARS-CoV infection.


Assuntos
Anticorpos Antivirais/imunologia , Glicoproteínas de Membrana/imunologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Peso Corporal , Quimiocina CCL2/análise , Modelos Animais de Doenças , Interleucina-6/análise , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus , Vacinas de Produtos Inativados , Replicação Viral
17.
Int J Exp Pathol ; 88(6): 403-14, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18039277

RESUMO

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes SARS. The pathogenic mechanisms of SARS-CoV remain poorly understood. Six cynomolgus monkeys were inoculated with the HKU39849 isolate of SARS-CoV via four routes. After intranasal inoculation, the virus was isolated from respiratory swabs on days 2-7 postinoculation (p.i.) and virus genome was detected in intestinal tissues on day 7 p.i. Virus was not detected after intragastric inoculation. After intravenous inoculation, infectious virus was isolated from rectal swabs, and virus antigen was detected in intestinal cells on day 14 p.i. After intratracheal (i.t.) inoculation, virus antigen-positive alveolar cells and macrophages were found in lung and infectious virus was detected in lymphoid and intestinal tissues. The peribronchial lymph nodes showed evidence of an immune response. Lung tissue and/or fluid and/or the peribronchial lymph node of the intratracheally inoculated animals had high TNF-alpha, IL-8 and IL-12 levels. SARS lung lesions are only generated in monkeys by i.t. inoculation. The virus appears to spread into and perhaps via the intestinal and lymphatic systems. It has been suggested previously that viraemia may cause intestinal infections in SARS patients.


Assuntos
Doenças Transmissíveis Emergentes/transmissão , Pulmão/virologia , Síndrome Respiratória Aguda Grave/transmissão , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Animais , Antígenos Virais/análise , Doenças Transmissíveis Emergentes/imunologia , Doenças Transmissíveis Emergentes/virologia , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Genoma Viral , Injeções , Injeções Intravenosas , Interleucina-12/imunologia , Interleucina-8/imunologia , Pulmão/imunologia , Tecido Linfoide/virologia , Macaca fascicularis , Macrófagos/virologia , Macrófagos Alveolares/virologia , Masculino , Modelos Animais , Reto/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/imunologia , Traqueia , Fator de Necrose Tumoral alfa/imunologia
18.
Virology ; 367(2): 390-7, 2007 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17628628

RESUMO

Replication-defective adenovirus type 5 (Ad5) vector-based vaccines are widely known to induce strong immunity against immunodeficiency viruses. To exploit this immunogenicity while overcoming the potential problem of preexisting immunity against human adenoviruses type 5, we developed a recombinant chimeric adenovirus type 5 with type 35 fiber vector (rAd5/35). We initially produced a simian immunodeficiency virus (SIV) gag DNA plasmid (rDNA-Gag), a human immunodeficiency virus type 1 (HIV-1) 89.6 env DNA plasmid (rDNA-Env) and a recombinant Ad5/35 vector encoding the SIV gag and HIV env gene (rAd5/35-Gag and rAd5/35-Env). Prime-boost vaccination with rDNA-Gag and -Env followed by high doses of rAd5/35-Gag and -Env elicited higher levels of cellular immune responses than did rDNAs or rAd5/35s alone. When challenged with a pathogenic simian human immunodeficiency virus (SHIV), animals receiving a prime-boost regimen or rAd5/35s alone maintained a higher number of CD4(+) T cells and remarkably suppressed plasma viral RNA loads. These findings suggest the clinical promise of an rAd5/35 vector-based vaccine.


Assuntos
Vacinas contra a AIDS/imunologia , Síndrome da Imunodeficiência Adquirida/prevenção & controle , Produtos do Gene gag/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Adenoviridae/genética , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Contagem de Linfócito CD4 , Modelos Animais de Doenças , Produtos do Gene gag/genética , Vetores Genéticos , Haplorrinos , Humanos , RNA Viral/sangue , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Carga Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
19.
Virus Genes ; 35(2): 281-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17253124

RESUMO

We previously reported the isolation of a novel subtype of SRV/D-Tsukuba (SRV/D-T) from two cynomolgus monkeys (Macaca facicularis) in the breeding colony of Tsukuba Primate Research Center (TPRC). We surveyed for SRV/D infection in the TPRC cynomolgus colony using SRV/D-specific PCR primer sets designed based on the entire gag region sequence. The only SRV/D subtype detected in the colony was SRV/D-T with a positive infection rate of 22.4% (n = 49). It has been reported that the mode of transmission of SRV/D is via contact with virus shed in the body fluids. In this report, to investigate the infection route of SRV/D-T in monkeys at TPRC, we performed virus isolation and PCR for detection of the SRV/D genome from peripheral blood mononuclear cells (PBMCs), plasma, saliva, urine, and feces. Virus isolation and PCR detection were positive in plasma, saliva, urine, and fecal samples from all monkeys on which virus was isolated from PBMCs. This suggests that the spread of SRV/D-T infection in TPRC is via contact with virus shed in saliva, urine, and/or feces. Also, comparison of sequences of gp70 on multiple SRV/D-T isolates revealed that there was little intra- and inter-monkey variation, suggesting that SRV/D-T is fairly stable.


Assuntos
Líquidos Corporais/virologia , Glicoproteínas/sangue , Glicoproteínas/urina , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/urina , Retrovirus dos Símios/fisiologia , Proteínas Virais/sangue , Proteínas Virais/urina , Eliminação de Partículas Virais/fisiologia , Animais , Sequência de Bases , Fezes/virologia , Feminino , Glicoproteínas/genética , Transmissão Vertical de Doenças Infecciosas , Macaca fascicularis , Masculino , Dados de Sequência Molecular , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/virologia , Retrovirus dos Símios/classificação , Retrovirus dos Símios/isolamento & purificação , Saliva/virologia , Infecções Tumorais por Vírus/transmissão , Infecções Tumorais por Vírus/virologia , Proteínas Virais/genética
20.
J Virol ; 80(11): 5179-88, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16698998

RESUMO

The potential threat of smallpox as a bioweapon has led to the production and stockpiling of smallpox vaccine in some countries. Human monkeypox, a rare but important viral zoonosis endemic to central and western Africa, has recently emerged in the United States. Thus, even though smallpox has been eradicated, a vaccinia virus vaccine that can induce protective immunity against smallpox and monkeypox is still invaluable. The ability of the highly attenuated vaccinia virus vaccine strain LC16m8, with a mutation in the important immunogenic membrane protein B5R, to induce protective immunity against monkeypox in nonhuman primates was evaluated in comparison with the parental Lister strain. Monkeys were immunized with LC16m8 or Lister and then infected intranasally or subcutaneously with monkeypox virus strain Liberia or Zr-599, respectively. Immunized monkeys showed no symptoms of monkeypox in the intranasal-inoculation model, while nonimmunized controls showed typical symptoms. In the subcutaneous-inoculation model, monkeys immunized with LC16m8 showed no symptoms of monkeypox except for a mild ulcer at the site of monkeypox virus inoculation, and those immunized with Lister showed no symptoms of monkeypox, while nonimmunized controls showed lethal and typical symptoms. These results indicate that LC16m8 prevents lethal monkeypox in monkeys, and they suggest that LC16m8 may induce protective immunity against smallpox.


Assuntos
Monkeypox virus/efeitos dos fármacos , Mpox/prevenção & controle , Vacina Antivariólica/administração & dosagem , Vaccinia virus/imunologia , Animais , Haplorrinos , Glicoproteínas de Membrana/imunologia , Vacina Antivariólica/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA