Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol Drugs Drug Resist ; 5(2): 48-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25949928

RESUMO

Malaria remains one of the most deadly diseases threatening humankind and is still affecting a significant proportion of the world population, especially in Africa. Chemotherapy is a vital component of the fight against the disease and new antimalarial agents are urgently needed to curb the spread of malaria parasites that are resistant to existing drugs. The natural product tryptanthrin is known for its wide range of activities, including antiplasmodial activity, but its poor solubility has undermined its development as potent antimicrobial and antiprotozoan agent. The aim of this work was to synthesize analogues of tryptanthrin and to evaluate their antiplasmodial activity against the asexual and sexual blood stages of Plasmodium falciparum. Our results suggest that most tryptanthrin analogues retained their antiplasmodial activity against chloroquine-sensitive and chloroquine-resistant malaria parasites in the nanomolar range (30-100 nM). The antiplasmodial activity of the most active compound NT1 (IC50: 30 nM; SI: 155.9) was similar in both strains and close to that of chloroquine (IC50: 20 nM) on the sensitive strain. The antiplasmodial activity was improved with derivatization, thus pointing out the necessity to explore tryptanthrin using medicinal chemistry approaches. Ten (10) of the tested derivatives met the criteria, allowing for advancement to animal testing, i.e., SI > 100 and IC50 < 100 nM. In addition to their activity on the asexual stages, tryptanthrin and two selected derivatives (NT1 and T8) prevented the maturation of gametocytes at their IC90 concentrations, indicating a transmission-blocking potential. Moreover, NT1 was able to impair gametogenesis by reducing the exflagellation of microgametes by 20% at IC90, while tryptanthrin and T8 had no influence on exflagellation. The results of this study confirm that tryptanthrin and its derivatives are potential antimalarial candidates with abilities to kill the intraerythrocytic asexual stages and prevent the formation of sexual stages of the parasite.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinazolinas/síntese química , Quinazolinas/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistência a Medicamentos , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA