Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 240: 106509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508473

RESUMO

Hyperglycemia is known as one of the main causes of infertility in human societies. Indole propionic acid (IPA) is produced by intestinal microbiota and has antioxidant and anti-inflammatory properties. This study aims to investigate the effects of IPA on molecular indices of steroidogenesis, ER stress, and apoptosis induced by high glucose (HG) in granulosa cells. Primary GCs, isolated from ovarian follicles of Rats were cultured in 5 mM (control) and 30 mM (HG) of glucose and in the presence of 10 and 20 µM of IPA for 24 h. The cell viability was assessed by MTT. The gene expression of P450SCC, 3ßHSD, CYP19A, BAX, BCL2, and STAR was evaluated by Real-Time PCR. Protein expression of ATF6, PERK, GRP78, and CHOP determined by western blot. Progesterone, estradiol, IL-1ß, and TNF-α were measured by ELISA. HG decreased the viability, and expression of P450SCC, 3ßHSD, CYP19A, BCL2, STAR, and increased BAX. 10 and 20 µM of IPA increased cell viability, expression of P450SCC, 3ßHSD, CYP19A, BCL2 and STAR and decreased BAX compared to the HG group. The expression of ATF6, PERK, GRP78, and CHOP proteins increased by HG and IPA decreased the expression of these proteins compared to the HG group. Also, HG decreased progesterone and estradiol levels and increased IL-1ß and TNF-α. IPA significantly increased progesterone and estradiol and decreased IL-1ß and TNF-α compared to the HG group. IPA can improve the side effects of HG in GCs of rats, as responsible cells for fertility, by improving steroidogenesis, regulation of ER-stress pathway, suppression of inflammation, and apoptosis.


Assuntos
Apoptose , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Glucose , Células da Granulosa , Indóis , Animais , Feminino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Ratos , Indóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Propionatos/farmacologia , Células Cultivadas , Progesterona/metabolismo , Biomarcadores/metabolismo , Ratos Sprague-Dawley
2.
Mol Biol Rep ; 50(12): 9925-9933, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874507

RESUMO

BACKGROUND: Metabolic dysregulation and excessive inflammation are implicated in the pathogenesis of the highly infectious disease of coronavirus disease 2019 (COVID-19), which is caused by a newly emerging coronavirus (i.e., severe acute respiratory syndrome-coronavirus 2; SARS-CoV-2). The adenosine 5'-monophosphate-activated protein kinase (AMPK), an energy sensor regulating the metabolic pathways in diverse cells, exerts a regulatory role in the immune system. This study aims to examine the mRNA expression level of AMPK and the plasma levels of interleukin-6 (IL-6) and IL-10 cytokines in patients with different grades of COVID-19. METHODS: Peripheral blood was collected from 60 patients with COVID-19 (Moderate, severe, and critical). The plasma levels of IL-6 and IL-10 were quantified by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression level of AMPK was determined using real-time PCR. RESULTS: The results showed that the plasma levels of IL-6 increased significantly in critical and severe patients compared to moderate cases of COVID-19 (P < 0.001). Moreover, IL-10 plasma concentrations were significantly higher in critical and severe cases than in moderate cases of COVID-19 (P < 0.01 and P < 0.05, respectively). Also, the gene expression of AMPK was meaningfully enhanced in critical patients relative to moderate and severe cases of COVID-19, in order (P < 0.001 and P < 0.01, respectively). There was a positive association between AMPK gene expression and plasma levels of IL-6 and IL-10 (P = 0.006, r = 0.348, P = 0.028, r = 0.283, respectively). CONCLUSION: Increasing AMPK gene expression is likely a necessary effort of the immune system to inhibit inflammation in critical COVID-19. However, this effort seems to be inadequate, probably due to factors that induce inflammation, like erythrocyte sedimentation rate (ESR) and IL-6.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Interleucina-6/genética , Interleucina-10/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , SARS-CoV-2/genética , Inflamação , Citocinas/genética , Monofosfato de Adenosina , RNA Mensageiro , Expressão Gênica , Adenosina
3.
Asian Pac J Cancer Prev ; 20(9): 2763-2774, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554375

RESUMO

Objective: Interaction of methamphetamine and sigma (σ) receptors lead to up-regulation and activation of these receptors. The σ receptors induced apoptosis in some parts of the brain by increasing calcium, dopamine, ROS, mitochondrial pores and caspase activity. Ibudilast is a phosphodiesterase inhibitor and anti-inflammatory drug, which can decrease the inflammatory cytokines. Also, it has a neuroprotective effect. It seems that ibudilast can reduce the methamphetamine-induced cell death due to inhibition of σ receptors. Materials and Methods: There were seven treatments including; control: culture medium, Treatment 1: 1mM methamphetamine, Treatment 2: 1mM methamphetamine and 1nM ibudilast, Treatment 3: 1mM methamphetamine and 10nM ibudilast, Treatment 4: 1mM methamphetamine and 100nM ibudilast, Treatment 5: 1mM methamphetamine and 1uM ibudilast, Treatment 6: 1mM methamphetamine and 10uM ibudilast, and Treatment 7: 1mM methamphetamine and 100uM ibudilast. Finally, for inhibition of PKA, CREB, IP3 receptor, NMDA receptor, Sigma receptor antagonist, sigma receptor agonist, cells were preincubated with adding H89 dihydrochloride, 666-15, Heparin, Ketamine, BMY 14802, and Pentazocine. MTT and LDH tests were performed for cell viability and cytotoxicity measurement, respectively. In continuing, the caspase activity colorimetric assay kit used for caspase 3 activity diagnosis. Rhodamine-123 performed to detection of mitochondrial membrane potential. TUNEL test used to DNA fragmentation and apoptosis, Fura-2 used to Measurement of (Ca2+) ic and (Ca2+) m, and fluorescence microscope used to Measurement of antioxidant enzyme activities. Results: Ibudilast increased the cell viability and the rhodamine-123 absorbance in methamphetamin-treated PC12 cells. It reduced cell cytotoxicity, caspase 3 activity, ic and m Ca2+ concentration, (OH) generation and DNA fragmentation in all concentrations of 1 nM t0 100 µM (p<0.05) by the optimal concentration of 100 µM, between our tested treatments. Conclusion: Ibudilast as a phosphodiesterase inhibitor can reduce the methamphetamine-induced cell death due to inhibition of σ receptors through cAMP production.


Assuntos
Apoptose/efeitos dos fármacos , Metanfetamina/farmacologia , Mitocôndrias/patologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Broncodilatadores/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Combinação de Medicamentos , Mitocôndrias/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA