Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Tradit Complement Med ; 11(3): 249-258, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34012871

RESUMO

BACKGROUND AND AIM: Most developing countries resort to medicinal plants for treating diseases, but few of these have scientific backing for their use. The aim of the study was to validate traditional use of Morinda lucida leaves in treating inflammation and determine the mechanism of action. EXPERIMENTAL PROCEDURE: Effect of hydroethanolic leaf extract of M. lucida (HEML) on localized inflammation was evaluated using rat paw edema presented by sub-planter injections of λ-carrageenan, histamine or serotonin in separate experiments. Systemic inflammation was evaluated by lipopolysaccharide (LPS)-induced hyperthermia. Antioxidant activity of HEML was also evaluated using the free-radical scavenging assay. RESULTS AND CONCLUSION: No mortalities were recorded in acute toxicity assay after administering 5000 mg/kg HEML to rats. It showed very good activity against localized and systemic inflammation in inverse dose-dependent manner and caused reduction in nitric oxide and prostaglandin E-2 levels by affecting expression of inducible nitric oxide synthase, but not cyclooxygenases-2 in LPS-activated RAW 264.7 murine macrophages. HEML reduced pro-inflammatory cytokines interleukin (IL)-1ß and tumor necrotic factor, but elevated levels of anti-inflammatory cytokine IL-10 in vitro. HEML contains saponins, reducing sugars, polyphenols and flavonoids and showed antioxidant activity with EC50 = 0.6415 ± 0.0027 mg/ml. In conclusion, this study provides evidence that HEML possesses anti-inflammatory activity, possibly through modulation of production of early/late phase inflammation mediators.

2.
PLoS Negl Trop Dis ; 14(12): e0008986, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370301

RESUMO

Japanese encephalitis virus (JEV) is maintained in an enzootic cycle between swine, water birds, and mosquitoes. JEV has circulated indigenously in Asia, with Culex tritaeniorhynchus as the primary vector. In some areas where the primary vector is scarce or absent, sporadic cases of Japanese encephalitis have been reported, with Aedes japonicus japonicus presumed to have the potential as a secondary vector. As one of the world's most invasive culicid species, Ae. j. japonicus carries a considerable health risk for spreading diseases to wider areas, including Europe and North America. Thus, evaluation of its competency as a JEV vector, particularly in a native population, will be essential in preventing potential disease spread. In this study, the two mosquito species' vector competence in transmitting three JEV genotypes (I, III, and V) was assessed, with Cx. tritaeniorhynchus serving as a point of reference. The mosquitoes were virus-fed and the infection rate (IR), dissemination rate (DR), and transmission rate (TR) evaluated individually by either RT-qPCR or focus forming assay. Results showed striking differences between the two species, with IR of 95% (261/274) and 9% (16/177) in Cx. tritaeniorhynchus and Ae. j. japonicus, respectively. Both mosquitoes were susceptible to all three JEV genotypes with significant differences in IR and mean viral titer. Results confirm the primary vector's competence, but the fact that JEV was able to establish in Ae. j. japonicus is of public health significance, and with 2%-16% transmission rate it has the potential to successfully transmit JEV to the next host. This may explain the human cases and infrequent detection in primary vector-free areas. Importantly, Ae. j. japonicus could be a relevant vector spreading the disease into new areas, indicating the need for security measures in areas where the mosquito is distributed or where it may be introduced.


Assuntos
Aedes/virologia , Culex/virologia , Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/transmissão , Mosquitos Vetores/virologia , Animais , Ásia/epidemiologia , Linhagem Celular , Chlorocebus aethiops , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/epidemiologia , Genótipo , Humanos , Células Vero , Proteínas do Envelope Viral/genética
3.
PLoS Negl Trop Dis ; 13(3): e0007235, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908481

RESUMO

Visceral leishmaniasis (VL) is a major problem worldwide and causes significant morbidity and mortality. Existing drugs against VL have limitations, including their invasive means of administration long duration of treatment regimens. There are also concerns regarding increasing treatment relapses as well as the identification of resistant clinical strains with the use of miltefosine, the sole oral drug for VL. There is, therefore, an urgent need for new alternative oral drugs for VL. In the present study, we show the leishmanicidal effect of a novel, oral antimalarial endoperoxide N-251. In our In vitro studies, N-251 selectively and specifically killed Leishmania donovani D10 amastigotes with no accompanying toxicity toward the host cells. In addition, N-251 exhibited comparable activities against promastigotes of L. donovani D10, as well as other L. donovani complex parasites, suggesting a wide spectrum of activity. Furthermore, even after a progressive infection was established in mice, N-251 significantly eliminated amastigotes when administered orally. Finally, N-251 suppressed granuloma formation in mice liver through parasite death. These findings indicate the therapeutic effect of N-251 as an oral drug, hence suggest N-251 to be a promising lead compound for the development of a new oral chemotherapy against VL.


Assuntos
Antimaláricos/administração & dosagem , Antiprotozoários/administração & dosagem , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Compostos de Espiro/administração & dosagem , Tetraoxanos/administração & dosagem , Animais , Antimaláricos/farmacologia , Antiprotozoários/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Leishmania donovani/fisiologia , Leishmaniose Visceral/patologia , Fígado/patologia , Camundongos Endogâmicos BALB C , Compostos de Espiro/farmacologia , Tetraoxanos/farmacologia , Resultado do Tratamento
4.
Bioorg Med Chem Lett ; 25(15): 3030-3, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048790

RESUMO

Human African trypanosomiasis (HAT), commonly known as sleeping sickness has remained a serious health problem in many African countries with thousands of new infected cases annually. Chemotherapy, which is the main form of control against HAT has been characterized lately by the viewpoints of toxicity and drug resistance issues. Recently, there have been a lot of emphases on the use of medicinal plants world-wide. Morinda lucida Benth. is one of the most popular medicinal plants widely distributed in Africa and several groups have reported on its anti-protozoa activities. In this study, we have isolated one novel tetracyclic iridoid, named as molucidin, from the CHCl3 fraction of the M. lucida leaves by bioassay-guided fractionation and purification. Molucidin was structurally elucidated by (1)H and (13)C NMR including HMQC, HMBC, H-H COSY and NOESY resulting in tetracyclic iridoid skeleton, and its absolute configuration was determined. We have further demonstrated that molucidin presented a strong anti-trypanosomal activity, indicating an IC50 value of 1.27 µM. The cytotoxicity study using human normal and cancer cell lines indicated that molucidin exhibited selectivity index (SI) against two normal fibroblasts greater than 4.73. Furthermore, structure-activity relationship (SAR) study was undertaken with molucidin and oregonin, which is identical to anti-trypanosomal active components of Alnus japonica. Overlapping analysis of the lowest energy conformation of molucidin with oregonin suggested a certain similarities of aromatic rings of both oregonin and molucidin. These results contribute to the future drug design studies for HAT.


Assuntos
Iridoides/química , Iridoides/farmacologia , Morinda/química , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma/efeitos dos fármacos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Iridoides/isolamento & purificação , Modelos Moleculares , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade , Tripanossomíase Africana/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA