Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735908

RESUMO

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Assuntos
Cádmio , Catharanthus , Regulação da Expressão Gênica de Plantas , Melatonina , Óxido Nítrico , Estresse Oxidativo , Folhas de Planta , Vimblastina , Catharanthus/metabolismo , Catharanthus/genética , Catharanthus/efeitos dos fármacos , Óxido Nítrico/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Vimblastina/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Protoplasma ; 259(4): 905-916, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34596758

RESUMO

The individual impact of silicon (Si) and nitric oxide (NO) on secondary metabolism in several plant species has been reported, but their combined effect has never been evaluated yet. Therefore, in this study, single and combined impacts of NO and Si on the biosynthesis of rosmarinic acid (RA) and essential oil (EO) content in leaves of Salvia officinalis were investigated under both non-stress and Cu stress conditions. The results indicated that high Cu concentration decreased biomass and the content of polyphenols, but elevated electrolyte leakage, while lower Cu concentrations, especially 200 µM Cu, increased the content of polyphenols, EO, and antioxidant capacity in leaves of S. officinalis. The foliar application of sodium silicate (1 mM Si) and sodium nitroprusside (200 µM SNP as a NO donor) alone and particularly in combination improved shoot dry biomass, restored chlorophyll and carotenoids, increased EO content, the amounts of flavonoids, and phenolic compounds especially RA, and enhanced antioxidant capacity in the leaves of S. officinalis under both non-stress and Cu stress conditions. Copper treatment increased NO content, upregulated expression of PAL, TAT, and RAS genes, and enhanced phenylalanine ammonia-lyase activity in the leaves, which were responsible for improving the production of phenolic compounds, particularly rosmarinic acid. Foliar spraying with Si and SNP intensified these attributes. All responses were more pronounced when NO and Si were simultaneously applied under Cu stress. These findings suggest that NO and Si synergistically modulate secondary metabolism through upregulation of related gene expression and enzyme activities under both non-stress and Cu stress conditions.


Assuntos
Óleos Voláteis , Salvia officinalis , Antioxidantes/metabolismo , Cinamatos , Depsídeos , Óxido Nítrico/metabolismo , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Polifenóis/metabolismo , Salvia officinalis/genética , Salvia officinalis/metabolismo , Silício , Ácido Rosmarínico
3.
Int J Phytoremediation ; 23(4): 362-373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32940550

RESUMO

Excessive nickel (Ni) accumulation in edible parts of the plants has become a serious challenge for food security over the past few decades. Therefore, in this study, the role of calcium (Ca2+) signaling in imparting Ni tolerance was investigated in zucchini (Cucurbita pepo L. cv Courgette d'Italie). Exposure of zucchini seedlings to Hogland solution containing 0.28 mmol L-1 Ni(NO3)2 reduced plant growth, the content of chlorophyll and carotenoids and the relative water content (RWC) in leaves, increased Ni accumulation that was accompanied to depletion of the essential bivalent cations and induced oxidative stress and proline accumulation in both shoots and roots. Pretreatment with the nutrient solution containing 15 mmol L-1 calcium chloride (CaCl2), significantly improved zucchini growth and photosynthetic pigment contents and maintained RWC in leaves under both control and Ni stress conditions. Pretreatment with CaCl2 reduced Ni accumulation, modified cation homeostasis, increased the activities of peroxidase and catalase enzymes and lowered Ni-induced accumulation of hydrogen peroxide, malondialdehyde and proline in leaves and roots. Pre-exposure of root with Ca2+ chelator (ethylene glycol tetraacetic acid) and plasma membrane Ca2+ channel blocker (lanthanum chloride) impaired impact of Ca2+ on the aforementioned attributes. Outcomes of this study not only highlight the signaling role of Ca2+ in regulating defensive responses but also suggest an eco- friendly approach for reducing the Ni contamination in plants that ensure food safety.


Assuntos
Cucurbita , Antioxidantes , Biodegradação Ambiental , Sinalização do Cálcio , Níquel/toxicidade , Raízes de Plantas
4.
Int J Phytoremediation ; 22(11): 1175-1184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32270687

RESUMO

Excessive heavy metals in medicinal plants cause critical health issues to humans. Therefore, in the present study, the effect of soil amendment with chitosan (0, 0.125, 0.25, 0.5, and 1%) on bioavailability and tolerance of nickel in Calendula tripterocarpa grown in a soil spiked with Ni (100 and 150 mg/kg soil) was investigated. The results showed that Ni toxicity significantly reduced plant growth and content of chlorophyll a, b but increased carotenoid levels, lipid peroxidation, and catalase (CAT) and superoxide dismutase (SOD) activities in roots and shoots. The Ni bioaccumulation was significantly higher in shoots than roots. The soil amendment with chitosan reduced Ni bioavailability in soil, as well as lowered the biological accumulation of Ni in roots and shoots, and Ni transfer to leaves. The chitosan application also increased growth parameters and levels of chlorophyll a, b and carotenoids under both normal and Ni stress conditions. Furthermore, chitosan reduced the level of malondialdehyde and the activities of SOD and CAT in roots and shoots under Ni stress. In conclusion, results indicated that chitosan through lowering bioavailability of Ni in soils can remarkably relieve adverse effects of Ni toxicity in C. tripterocarpa.


Assuntos
Calendula , Quitosana , Poluentes do Solo/análise , Biodegradação Ambiental , Disponibilidade Biológica , Clorofila A , Níquel , Raízes de Plantas/química , Solo
5.
Environ Sci Pollut Res Int ; 27(7): 6981-6994, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31883077

RESUMO

In this study, a pot experiment was performed to evaluate the effects of foliar spray with sodium nitroprusside (200 µM SNP) and melatonin (100 µM) singly and in combination on tolerance and accumulation of cadmium (Cd) in Catharanthus roseus (L.) G. Don plants exposed to different levels of cadmium (0, 50, 100, and 200 mg Cd kg-1 soil). The results showed that 50 mg kg-1 Cd had no significant effect on the fresh and dry weight of roots and shoots and content of chlorophyll (Chl) a and b, but the higher levels of Cd (100 and 200 mg kg-1) significantly reduced these attributes and induced an increase in the level of leaf electrolyte leakage and disrupted nutrient homeostasis. The activities of catalase (CAT) and peroxidase (POD) in leaves were increased under lower Cd concentrations (50 and 100 mg kg-1) but decreased under 200 mg kg-1 Cd. However, foliar spray with melatonin and/or SNP increased shoot biomass and the content of Chl a and b, augmented activities of POD and CAT, lowered electrolyte leakage (EL), and improved essential cations homeostasis in leaves. Cadmium content in shoots of C. roseus was less than roots and TF (transfer factor) was < 1. Interestingly, foliar spray with SNP and/or melatonin increased Cd accumulation and bioconcentration factor (BCF) in both roots and shoots and elevated the Cd transport from roots to shoot, as TF values increased in these treatments. The co-application of melatonin and SNP further than their separate usage augmented Cd tolerance through increasing activities of antioxidant enzymes and regulating mineral homeostasis in C. roseus. Furthermore, co-treatment of SNP and melatonin increased Cd phytoremediation efficiency in C. roseus through increasing biomass and elevating uptake and translocation of Cd from root to shoot.


Assuntos
Biodegradação Ambiental , Cádmio/toxicidade , Catharanthus , Melatonina/metabolismo , Óxido Nítrico/metabolismo , Poluentes do Solo/toxicidade , Antioxidantes , Raízes de Plantas
6.
Plant Physiol Biochem ; 143: 286-298, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31539758

RESUMO

In this study, the effect of seed priming with sodium hydro sulfide (NaHS) and CaCl2 as well as the possible relationship between them in inducing post-germinative cross-adaptation in zucchini seedlings (cv Courgette d'Italie) were investigated. Results showed that Ni toxicity reduced plant growth and photosynthetic pigments, decreased the content of ascorbate (AsA) and total thiols, increased hydrogen peroxide (H2O2) content and electrolyte leakage (EL), up-regulated the transcription levels of Ca2+-dependent protein kinase (CDPK) and phytochelatin (PCs) genes and elevated H2S content in leaves of zucchini seedlings. Individual or combined seed priming with Ca2+ and NaHS improved the content of photosynthetic pigments and seedling biomass, reduced H2O2 content and EL, increased the content of AsA and total thiols, decreased ascorbate peroxidase activity and enhanced glutathione reductase activity in leaves. These findings suggest the last time effect of seed priming with Ca2+ and NaHS on inducing cross-adaptation in seedlings under Ni stress. H2S accumulation and other responses induced with Ca2+ in leaves were weakened with hypotaurine (HT as H2S scavenger), denoting seed priming with Ca2+ established cross-adaptation in a H2S-dependent manner. Seed priming with NaHS amplified CDPK transcripts in leaves of seedlings and seed priming with ethylene glycol tetraacetic acid (as Ca2+ chelator), lanthanum chloride and verapamil (as plasma membrane channel blockers) reduced transcript levels of CDPK and PCs genes and reversed impacts of seed priming with NaHS. These results indicated that the cross-adaptation induced with NaHS is mediated through Ca2+ signaling. Overall our findings suggest that two-side cross-talk between Ca2+ and H2S is involved in the acquisition of a signal memory in seed embryo cells which can be employed upon a later Ni-exposure and more strongly enhance AsA-GSH cycle, redox homeostasis and phytochelatin transcripts in leaves of zucchini seedlings grown from primed seeds.


Assuntos
Ácido Ascórbico/metabolismo , Cálcio/farmacologia , Sulfeto de Hidrogênio/farmacologia , Níquel/toxicidade , Plântula/efeitos dos fármacos , Plântula/metabolismo , Sementes/metabolismo , Glutationa/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sementes/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA