Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125280

RESUMO

Postbiotics are defined as a preparation of inanimate microorganisms and/or their components that confers a health benefit to the host. They range from cell wall fragments to metabolites, bacterial lysates, extracellular vesicles, and short-chain fatty acids (SCFAs). Postbiotics may influence carcinogenesis via a variety of mechanisms. They can promote homeostatic immune responses, reduce inflammation, induce selective cytotoxicity against tumor cells, as well as the enabling the control of tumor cell proliferation and enhancing intestinal epithelial barrier function. Therefore, probiotics can serve as an adjunct strategy in anticancer treatment together with chemotherapy and immunotherapy. Up to now, the only relevant postbiotics used as interventions in oncological patients remain vitamin K molecules, with few phase-II and III trials available. In fact, postbiotics' levels are strictly dependent on the gut microbiota's composition, which may vary between individuals and can be altered under different physiological and pathological conditions. Therefore, the lack of consistent clinical evidence supporting postbiotics' efficacy is due to their poor bioavailability, short half-life, and fluctuating levels. Synbiotics, a mixture of prebiotics and probiotics, are expected to have a more homogeneous bioavailability with respect to postbiotics and may have greater potential for future development. In this review, we focus on the role of postbiotics as an adjuvant therapy in cancer treatment.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Probióticos , Humanos , Neoplasias/terapia , Probióticos/uso terapêutico , Prebióticos/administração & dosagem , Simbióticos/administração & dosagem
2.
Gut Microbes ; 16(1): 2388801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132842

RESUMO

The interaction between the gut microbiota and invariant Natural Killer T (iNKT) cells plays a pivotal role in colorectal cancer (CRC). The pathobiont Fusobacterium nucleatum influences the anti-tumor functions of CRC-infiltrating iNKT cells. However, the impact of other bacteria associated with CRC, like Porphyromonas gingivalis, on their activation status remains unexplored. In this study, we demonstrate that mucosa-associated P. gingivalis induces a protumour phenotype in iNKT cells, subsequently influencing the composition of mononuclear-phagocyte cells within the tumor microenvironment. Mechanistically, in vivo and in vitro experiments showed that P. gingivalis reduces the cytotoxic functions of iNKT cells, hampering the iNKT cell lytic machinery through increased expression of chitinase 3-like-1 protein (CHI3L1). Neutralization of CHI3L1 effectively restores iNKT cell cytotoxic functions suggesting a therapeutic potential to reactivate iNKT cell-mediated antitumour immunity. In conclusion, our data demonstrate how P. gingivalis accelerates CRC progression by inducing the upregulation of CHI3L1 in iNKT cells, thus impairing their cytotoxic functions and promoting host tumor immune evasion.


Assuntos
Proteína 1 Semelhante à Quitinase-3 , Neoplasias Colorretais , Células T Matadoras Naturais , Porphyromonas gingivalis , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Células T Matadoras Naturais/imunologia , Porphyromonas gingivalis/imunologia , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Humanos , Animais , Camundongos , Microambiente Tumoral/imunologia , Evasão da Resposta Imune , Evasão Tumoral , Microbioma Gastrointestinal/imunologia , Linhagem Celular Tumoral , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Feminino , Camundongos Endogâmicos C57BL , Masculino
3.
J Gastrointest Cancer ; 55(2): 662-678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38411876

RESUMO

PURPOSE: Stomach and esophageal cancers are among the highest mortality from cancers worldwide. Microbiota has an interplaying role within the human gastrointestinal (GI) tract. Dysbiosis occurs when a disruption of the balance between the microbiota and the host happens. With this narrative review, we discuss the main alterations in the microbiome of gastroesophageal cancer, revealing its potential role in the pathogenesis, early detection, and treatment. RESULTS: Helicobacter pylori plays a major role the development of a cascade of preneoplastic conditions ranging from atrophic gastritis to metaplasia and dysplasia, ultimately culminating in gastric cancer, while other pathogenic agents are Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli, and Lactobacillus. Campylobacter species (spp.)'s role in the progression of esophageal adenocarcinoma may parallel that of Helicobacter pylori in the context of gastric cancer, with other esophageal carcinogenic agents being Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. Moreover, gut microbiome could significantly alter the outcomes of chemotherapy and immunotherapy. The gut microbiome can be modulated through interventions such as antibiotics, probiotics, or prebiotics intake. Fecal microbiota transplantation has emerged as a therapeutic strategy as well. CONCLUSIONS: Nowadays, it is widely accepted that changes in the normal gut microbiome causing dysbiosis and immune dysregulation play a role gastroesophageal cancer. Different interventions, including probiotics and prebiotics intake are being developed to improve therapeutic outcomes and mitigate toxicities associated with anticancer treatment. Further studies are required in order to introduce the microbiome among the available tools of precision medicine in the field of anticancer treatment.


Assuntos
Disbiose , Neoplasias Esofágicas , Microbioma Gastrointestinal , Neoplasias Gástricas , Humanos , Neoplasias Esofágicas/microbiologia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/terapia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Disbiose/diagnóstico , Disbiose/microbiologia , Disbiose/terapia , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Adenocarcinoma/microbiologia , Adenocarcinoma/terapia , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia
4.
J Pers Med ; 13(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37763093

RESUMO

Gastric cancer ranks as the fifth-leading contributor to global cancer incidence and the fourth-highest in terms of cancer-related mortality. Helicobacter pylori (H. pylori) infection leads to inflammation and ulceration, atrophic and chronic gastritis, and eventually, increases the risk of developing gastric adenocarcinoma. In this paper, we delve into the combined impact of a high-salt diet (HSD) and concurrent H. pylori infection, which act as predisposing factors for gastric malignancy. A multitude of mechanisms come into play, fostering the development of gastric adenocarcinoma due to the synergy between an HSD and H. pylori colonization. These encompass the disruption of mucosal barriers, cellular integrity, modulation of H. pylori gene expression, oxidative stress induction, and provocation of inflammatory responses. On the whole, gastric cancer patients were reported to have a higher median sodium intake with respect to healthy controls. H. pylori infection constitutes an additional risk factor, with a particular impact on the population with the highest daily sodium intake. Consequently, drawing from epidemiological discoveries, substantial evidence suggests that diminishing salt intake and employing antibacterial therapeutics could potentially lower the susceptibility to gastric cancer among individuals.

5.
Mucosal Immunol ; 16(3): 326-340, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004750

RESUMO

iNKT cells account for a relevant fraction of effector T-cells in the intestine and are considered an attractive platform for cancer immunotherapy. Although iNKT cells are cytotoxic lymphocytes, their functional role in colorectal cancer (CRC) is still controversial, limiting their therapeutic use. Thus, we examined the immune cell composition and iNKT cell phenotype of CRC lesions in patients (n = 118) and different murine models. High-dimensional single-cell flow-cytometry, metagenomics, and RNA sequencing experiments revealed that iNKT cells are enriched in tumor lesions. The tumor-associated pathobiont Fusobacterium nucleatum induces IL-17 and Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in iNKT cells without affecting their cytotoxic capability but promoting iNKT-mediated recruitment of neutrophils with polymorphonuclear myeloid-derived suppressor cells-like phenotype and functions. The lack of iNKT cells reduced the tumor burden and recruitment of immune suppressive neutrophils. iNKT cells in-vivo activation with α-galactosylceramide restored their anti-tumor function, suggesting that iNKT cells can be modulated to overcome CRC-associated immune evasion. Tumor co-infiltration by iNKT cells and neutrophils correlates with negative clinical outcomes, highlighting the importance of iNKT cells in the pathophysiology of CRC. Our results reveal a functional plasticity of iNKT cells in CRC, suggesting a pivotal role of iNKT cells in shaping the tumor microenvironment, with relevant implications for treatment.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Células T Matadoras Naturais , Camundongos , Animais , Neutrófilos , Antineoplásicos/farmacologia , Imunoterapia , Neoplasias Colorretais/patologia , Microambiente Tumoral
6.
Curr Opin Pharmacol ; 67: 102315, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36351361

RESUMO

Our understanding of the gut microbiota has significantly evolved over the last two decades. Advances in the analysis of the gut microbiome continues to reveal complex microbial communities and discoveries about their role in health and diseases, including cancer development, are continuously growing. In addition, research has demonstrated that the use of antibiotics can modulate the gut microbiota composition negatively and influence cancer treatment outcomes, suggesting that antibiotics should be avoided if possible. In this article, we review the role of the gut microbiota in the formation of GI cancers. We show that specific bacterial populations can positively or negatively affect cancer formation with specific attention given to gastric and colorectal cancer. We also review the role of microbial-targeted therapies on cancer treatment outcomes.


Assuntos
Microbioma Gastrointestinal , Neoplasias Gastrointestinais , Microbiota , Humanos , Antibacterianos/uso terapêutico , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/microbiologia
7.
Cells ; 11(4)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203339

RESUMO

Neuroendocrine neoplasms (NENs) are rare neoplasms with heterogeneous clinical behavior. Alteration in human microbiota was reported in association with carcinogenesis in different solid tumors. However, few studies addressed the role of microbiota in NEN. We here aimed at evaluating the presence of bacterial infiltration in neuroendocrine tumoral tissue. To assess the presence of bacteria, 20 specimens from pancreatic NEN (pan-NEN) and 20 from intestinal NEN (I-NEN) were evaluated through Fluorescent In situ Hybridization and confocal microscopy. Demographic data, pre-operative investigations, operative findings, pathological diagnosis, follow-up, and survival data were evaluated. Among I-NEN, bacteria were detected in 15/20 (75%) specimens, with high variability in microbial distribution. In eight patients, a high infiltration of microorganisms was observed. Among pan-NEN, 18/20 (90%) showed microorganisms' infiltration, with a homogeneous microbial distribution. Bacterial localization in pan-NEN was observed in the proximity of blood vessels. A higher bacterial infiltration in the tumoral specimen as compared with non-tumoral tissue was reported in 10/20 pan-NEN (50%). No significant differences were observed in mean bacterial count according to age, sex, ki67%, site, tumor stage. Mean bacterial count did not result to be a predictor of disease-specific survival. This preliminary study demonstrates the presence of a significant microbiota in the NEN microenvironment. Further research is needed to investigate the potential etiological or clinical role of microbiota in NEN.


Assuntos
Microbiota , Tumores Neuroendócrinos , Humanos , Hibridização in Situ Fluorescente , Tumores Neuroendócrinos/patologia , Projetos Piloto , Microambiente Tumoral
8.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751239

RESUMO

Colorectal cancer (CRC) is a multifaceted disease influenced by both environmental and genetic factors. A large body of literature has demonstrated the role of gut microbes in promoting inflammatory responses, creating a suitable microenvironment for the development of skewed interactions between the host and the gut microbiota and cancer initiation. Even if surgery is the primary therapeutic strategy, patients with advanced disease or cancer recurrence after surgery remain difficult to cure. Therefore, the gut microbiota has been proposed as a novel therapeutic target in light of recent promising data in which it seems to modulate the response to cancer immunotherapy. The use of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics, and fecal microbiota transplantation, is therefore considered to support current therapies in CRC management. In this review, we will discuss the importance of host-microbe interactions in CRC and how promoting homeostatic immune responses through microbe-targeted therapies may be useful in preventing/treating CRC development.


Assuntos
Neoplasias Colorretais/terapia , Disbiose/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/imunologia , Recidiva Local de Neoplasia/terapia , Probióticos/uso terapêutico , Antibacterianos/uso terapêutico , Produtos Biológicos/uso terapêutico , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Disbiose/imunologia , Disbiose/microbiologia , Disbiose/patologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/microbiologia , Recidiva Local de Neoplasia/patologia , Prebióticos/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA