Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 29(6): 988-997, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398081

RESUMO

Nonsyndromic hearing loss is genetically heterogeneous. Despite comprehensive genetic testing, many cases remain unsolved because the clinical significance of identified variants is uncertain or because biallelic pathogenic variants are not identified for presumed autosomal recessive cases. Common synonymous variants are often disregarded. Determining the pathogenicity of synonymous variants may improve genetic diagnosis. We report a synonymous variant c.9861 C > T/p.(Gly3287=) in MYO15A in homozygosity or compound heterozygosity with another pathogenic or likely pathogenic MYO15A variant in 10 unrelated families with nonsyndromic sensorineural hearing loss. Biallelic variants in MYO15A were identified in 21 affected and were absent in 22 unaffected siblings. A mini-gene assay confirms that the synonymous variant leads to abnormal splicing. The variant is enriched in the Ashkenazi Jewish population. Individuals carrying biallelic variants involving c.9861 C > T often exhibit progressive post-lingual hearing loss distinct from the congenital profound deafness typically associated with biallelic loss-of-function MYO15A variants. This study establishes the pathogenicity of the c.9861 C > T variant in MYO15A and expands the phenotypic spectrum of MYO15A-related hearing loss. Our work also highlights the importance of multicenter collaboration and data sharing to establish the pathogenicity of a relatively common synonymous variant for improved diagnosis and management of hearing loss.


Assuntos
Frequência do Gene , Perda Auditiva/genética , Miosinas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genes Recessivos , Perda Auditiva/etnologia , Perda Auditiva/patologia , Humanos , Lactente , Judeus/genética , Masculino , Mutação , Linhagem , Splicing de RNA
2.
NPJ Genom Med ; 2: 13, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263828

RESUMO

We empirically examined the strengths and weaknesses of two human genome-wide DNA methylation platforms: rapid multiplexed reduced representation bisulfite sequencing and Illumina's Infinium BeadChip. Rapid multiplexed reduced representation bisulfite sequencing required less input DNA, offered more flexibility in coverage, and interrogated more CpG loci at a higher regional density. The Infinium covered slightly more protein coding, cancer-associated and mitochondrial-related genes, both platforms covered all known imprinting clusters, and rapid multiplexed reduced representation bisulfite sequencing covered more microRNA genes than the HumanMethylation450, but fewer than the MethylationEPIC. Rapid multiplexed reduced representation bisulfite sequencing did not always interrogate exactly the same CpG loci, but genomic tiling improved overlap between different libraries. Reproducibility of rapid multiplexed reduced representation bisulfite sequencing and concordance between the platforms increased with CpG density. Only rapid multiplexed reduced representation bisulfite sequencing could genotype samples and measure allele-specific methylation, and we confirmed that Infinium measurements are influenced by nearby single-nucleotide polymorphisms. The respective strengths and weaknesses of these two genome-wide DNA methylation platforms need to be considered when conducting human epigenetic studies.

3.
J Virol ; 90(9): 4511-4519, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912621

RESUMO

UNLABELLED: Antiretroviral therapy (ART) is successful in the suppression of HIV but cannot target and eradicate the latent proviral reservoir. The location of retroviral integration into the human genome is thought to play a role in the clonal expansion of infected cells and HIV persistence. We developed a high-throughput targeted sequence capture assay that uses a pool of HIV-specific probes to enrich Illumina libraries prior to deep sequencing. Using an expanded clonal population of ACH-2 cells, we demonstrate that this sequence capture assay has an extremely low false-positive rate. This assay assessed four cellular models commonly used to study HIV latency and latency-reversing agents: ACH-2 cells, J-Lat cells, the Bcl-2-transduced primary CD4(+)model, and the cultured TCM(central memory) CD4(+)model. HIV integration site characteristics and genes were compared between these cellular models and to previously reported patient data sets. Across these cellular models, there were significant differences in integration site characteristics, including orientation relative to that of the host gene, the proportion of clonally expanded sites, and the proportion located within genic regions and exons. Despite a greater diversity of minority integration sites than expected in ACH-2 cells, their integration site characteristics consistently differed from those of the other models and from the patient samples. Gene ontology analysis of highly represented genes from the patient samples found little overlap with HIV-containing genes from the cell lines. These findings show that integration site differences exist among the commonly used cellular models of HIV latency and in comparison to integration sites found in patient samples. IMPORTANCE: Despite the success of ART, currently there is no successful therapy to eradicate integrated proviruses. Cellular models of HIV latency are used to test the efficacy of latency-reversing agents, but it is unclear how well these models reflect HIV integration into the human genome in vivo We have developed a novel probe-based sequence enrichment assay to sequence and analyze integrated HIV. We compared HIV integration site characteristics between four cellular models and to previously described patient data sets. Significant differences were detected in the distribution of HIV integration sites between cellular models of HIV latency and compared to data sets from patient samples. The results from this study have implications for how well these cellular models of HIV infection truly reflect HIV integration in vivo and their applicability in drug discovery for novel latency-reversing agents.


Assuntos
Sondas de DNA , Infecções por HIV/genética , Infecções por HIV/virologia , HIV/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Integração Viral , Latência Viral , Linhagem Celular , Células Cultivadas , Mapeamento Cromossômico , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA