Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Exp Hematol ; 86: 15-20.e2, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32450206

RESUMO

Transplantable CD34+ hematopoietic stem/progenitor cells (HSPCs) are currently isolated mainly from peripheral blood after mobilization with granulocyte colony-stimulating factor (G-CSF). These mobilized CD34+ cells have the potential to generate all blood cell types. For autologous transplantation, the minimal number of mobilized CD34+ cells is 2 × 106 CD34+ cells/kg body weight. However, up to 30% of patients fail to mobilize enough peripheral CD34+ cells after G-CSF treatment. To overcome this limitation, a combination of G-CSF and Plerixafor, a CXCR4 chemokine receptor inhibitor, is proposed to enhance CD34+ cell mobilization in poor mobilizer patients. However, only limited data are available on quantification of the functional quality of such patients' mobilized hematopoietic stem cells. Here, for six poor mobilizer patients, a head-to-head comparison of their CD34+ cells mobilized without versus with Plerixafor was performed to assess their properties with respect to the reconstitution of human hematopoiesis in vivo in immune-deficient mice. Our results indicate that mobilized CD34+ cells recovered after the G-CSF + Plerixafor mobilization protocol have an enhanced intrinsic hematopoietic reconstitution potential compared with CD34+ cells mobilized with G-CSF alone.


Assuntos
Antígenos CD34/sangue , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Mobilização de Células-Tronco Hematopoéticas , Compostos Heterocíclicos/administração & dosagem , Células-Tronco de Sangue Periférico/metabolismo , Animais , Benzilaminas , Ciclamos , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Transplante de Células-Tronco de Sangue Periférico , Células-Tronco de Sangue Periférico/patologia
2.
Stem Cells ; 33(7): 2268-79, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25858676

RESUMO

Hematopoietic stem/progenitor cells (HSPCs) are regulated through numerous molecular mechanisms that have not been interconnected. The transcription factor stem cell leukemia/T-cell acute leukemia 1 (TAL1) controls human HSPC but its mechanism of action is not clarified. In this study, we show that knockdown (KD) or short-term conditional over-expression (OE) of TAL1 in human HSPC ex vivo, respectively, blocks and maintains hematopoietic potentials, affecting proliferation of human HSPC. Comparative gene expression analyses of TAL1/KD and TAL1/OE human HSPC revealed modifications of cell cycle regulators as well as previously described TAL1 target genes. Interestingly an inverse correlation between TAL1 and DNA damage-induced transcript 4 (DDiT4/REDD1), an inhibitor of the mammalian target of rapamycin (mTOR) pathway, is uncovered. Low phosphorylation levels of mTOR target proteins in TAL1/KD HSPC confirmed an interplay between mTOR pathway and TAL1 in correlation with TAL1-mediated effects of HSPC proliferation. Finally chromatin immunoprecipitation experiments performed in human HSPC showed that DDiT4 is a direct TAL1 target gene. Functional analyses showed that TAL1 represses DDiT4 expression in HSPCs. These results pinpoint DDiT4/REDD1 as a novel target gene regulated by TAL1 in human HSPC and establish for the first time a link between TAL1 and the mTOR pathway in human early hematopoietic cells. Stem Cells 2015;33:2268-2279.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Choque Térmico/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Choque Térmico/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos NOD , Proteínas Proto-Oncogênicas/genética , Fator 1 de Transcrição de Linfócitos T , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Transcrição/genética , Transfecção
3.
Haematologica ; 100(6): 757-67, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25840601

RESUMO

Primary myelofibrosis is characterized by clonal myeloproliferation, dysmegakaryopoiesis, extramedullary hematopoiesis associated with myelofibrosis and altered stroma in the bone marrow and spleen. The expression of CD9, a tetraspanin known to participate in megakaryopoiesis, platelet formation, cell migration and interaction with stroma, is deregulated in patients with primary myelofibrosis and is correlated with stage of myelofibrosis. We investigated whether CD9 participates in the dysmegakaryopoiesis observed in patients and whether it is involved in the altered interplay between megakaryocytes and stromal cells. We found that CD9 expression was modulated during megakaryocyte differentiation in primary myelofibrosis and that cell surface CD9 engagement by antibody ligation improved the dysmegakaryopoiesis by restoring the balance of MAPK and PI3K signaling. When co-cultured on bone marrow mesenchymal stromal cells from patients, megakaryocytes from patients with primary myelofibrosis displayed modified behaviors in terms of adhesion, cell survival and proliferation as compared to megakaryocytes from healthy donors. These modifications were reversed after antibody ligation of cell surface CD9, suggesting the participation of CD9 in the abnormal interplay between primary myelofibrosis megakaryocytes and stroma. Furthermore, silencing of CD9 reduced CXCL12 and CXCR4 expression in primary myelofibrosis megakaryocytes as well as their CXCL12-dependent migration. Collectively, our results indicate that CD9 plays a role in the dysmegakaryopoiesis that occurs in primary myelofibrosis and affects interactions between megakaryocytes and bone marrow stromal cells. These results strengthen the "bad seed in bad soil" hypothesis that we have previously proposed, in which alterations of reciprocal interactions between hematopoietic and stromal cells participate in the pathogenesis of primary myelofibrosis.


Assuntos
Megacariócitos/metabolismo , Mielofibrose Primária/metabolismo , Células Estromais/metabolismo , Tetraspanina 29/fisiologia , Trombopoese/fisiologia , Técnicas de Cocultura , Humanos , Megacariócitos/patologia , Mielofibrose Primária/patologia , Células Estromais/patologia
4.
J Immunother ; 37(5): 278-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24810639

RESUMO

We have previously shown that human umbilical cord blood CD34 progenitor cells undergo in vitro differentiation into functional natural killer (NK) cells and that their coculture in the presence of HOXB4-transduced stromal MS-5 cells resulted in an increase in differentiated NK number. The present study was conducted to compare the stromal effect on NK lytic potential in the presence and absence of HOXB4. Our results provide evidence that HOXB4-transduced MS-5 cells as compared with transduced GFP (+) MS-5 cells induced highly differentiated cytotoxic NK cells. Importantly, this difference was not because of the expression of activating NK receptors but was associated with an increased induction of granzyme B degranulation in response to stimulation with NK cell susceptible targets. DNA microarray-based global transcriptional profiling confirmed the upregulation of granzyme B. These findings provide further evidence that HOXB4 is a crucial regulator of NK function and that its use in generating functional NK cells with increased lytic potential may be significant for cancer immunotherapy.


Assuntos
Citotoxicidade Imunológica , Sangue Fetal/citologia , Proteínas de Homeodomínio/metabolismo , Células Matadoras Naturais/fisiologia , Células Estromais/fisiologia , Fatores de Transcrição/metabolismo , Antígenos CD34/metabolismo , Antígeno CD56/metabolismo , Diferenciação Celular , Técnicas de Cocultura , Perfilação da Expressão Gênica , Granzimas/genética , Granzimas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Células K562 , Análise em Microsséries , Fatores de Transcrição/genética , Transgenes/genética , Regulação para Cima
5.
Front Immunol ; 5: 95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672522

RESUMO

Blurring the boundary between innate and adaptive immune system, natural killer (NK) cells are widely recognized as potent anti-leukemia mediators. Alloreactive donor NK cells have been shown to improve the outcome of allogeneic stem-cell transplantation for leukemia. In addition, in vivo transfer of NK cells may soon reveal an important therapeutic tool for leukemia, if tolerance to NK-mediated anti-leukemia effects is overcome. This will require, at a minimum, the ex vivo generation of a clinically safe NK cell product containing adequate numbers of NK cells with robust anti-leukemia potential. Ideally, ex vivo generated NK cells should also have similar anti-leukemia potential in different patients, and be easy to obtain for convenient clinical scale-up. Moreover, optimal clinical protocols for NK therapy in leukemia and other cancers are still lacking. These and other issues are being currently addressed by multiple research groups. This review will first describe current laboratory NK cell expansion and differentiation techniques by separately addressing different NK cell sources. Subsequently, it will address the mechanisms known to be responsible for NK cell alloreactivity, as well as their clinical impact in the hematopoietic stem cells transplantation setting. Finally, it will briefly provide insight on past NK-based clinical trials.

6.
Blood ; 123(23): 3585-95, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24677544

RESUMO

Cytarabine (cytosine arabinoside) is one of the most effective drugs for the treatment of patients diagnosed with acute myeloid leukemia (AML). Despite its efficiency against AML cells, the emergence of drug resistance due to prolonged chemotherapy in most patients is still a major obstacle. Several studies have shown that drug resistance mechanisms alter the sensitivity of leukemia cells to immune system effector cells. To investigate this phenomenon, parental acute myeloid cell lines, HL-60 and KG-1, were continuously exposed to increasing doses of cytarabine in order to establish equivalent resistant cell lines, HL-60(R) and KG-1(R). Our data indicate that cytarabine-resistant cells are more susceptible to natural killer (NK)-mediated cell lysis as compared with parental cytarabine-sensitive cells. The increased susceptibility correlates with the induction of UL-16 binding proteins (ULBP) 1/2/3 and NK group 2, member D (NKG2D) ligands on target cells by a mechanism involving c-Myc induction. More importantly, chromatin immunoprecipitation assay revealed that ULBP1/3 are direct targets of c-Myc. Using drug-resistant primary AML blasts as target cells, inhibition of c-Myc resulted in decreased expression of NKG2D ligands and the subsequent impairment of NK cell lysis. This study provides for the first time, the c-Myc dependent regulation of NKG2D ligands in AML.


Assuntos
Citotoxicidade Imunológica/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Antimetabólitos Antineoplásicos/farmacologia , Morte Celular/genética , Células Cultivadas , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Leucêmica da Expressão Gênica , Células HL-60 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/metabolismo , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/agonistas , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo
7.
Haematologica ; 97(2): 168-78, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22298821

RESUMO

BACKGROUND: Expansion of hematopoietic stem cells represents an important objective for improving cell and gene therapy protocols. Retroviral transduction of the HoxB4 homeogene in mouse and human hematopoietic stem cells and hematopoietic progenitors is known to promote the cells' expansion. A safer approach consists in transferring homeobox proteins into hematopoietic stem cells taking advantage of the natural ability of homeoproteins to cross cell membranes. Thus, HOXB4 protein transfer is operative for expanding human hematopoietic cells, but such expansion needs to be improved. DESIGN AND METHODS: To that aim, we evaluated the effects of HOXC4, a protein encoded by a HOXB4 paralog gene, by co-culturing HOXC4-producing stromal cells with human CD34(+) hematopoietic cells. Numbers of progenitors and stem cells were assessed by in vitro cloning assays and injection into immuno-deficient mice, respectively. We also looked for activation or inhibition of target downstream gene expression. RESULTS: We show that the HOXC4 homeoprotein expands human hematopoietic immature cells by 3 to 6 times ex vivo and significantly improves the level of in vivo engraftment. Comparative transcriptome analysis of CD34(+) cells subjected or not to HOXB4 or HOXC4 demonstrated that both homeoproteins regulate the same set of genes, some of which encode key hematopoietic factors and signaling molecules. Certain molecules identified herein are factors reported to be involved in stem cell fate or expansion in other models, such as MEF2C, EZH2, DBF4, DHX9, YPEL5 and Pumilio. CONCLUSIONS: The present study may help to identify new HOX downstream key factors potentially involved in hematopoietic stem cell expansion or in leukemogenesis.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
8.
Cytometry B Clin Cytom ; 80(3): 176-85, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21520405

RESUMO

BACKGROUND: Flow cytometry is the sole available technique for quantification of tumor plasma-cells in plasma-cell disorders, but so far, no consensus technique has been proposed. Here, we report on a standardized, simple, robust five color flow cytometry protocol developed to characterize and quantify bone marrow tumor plasma-cells, validated in a multicenter manner. METHODS: CD36 was used to exclude red blood cell debris and erythroblasts, CD38 and CD138 to detect plasma-cells, immunoglobulin light chains, CD45, CD56, CD19, and CD117 + CD34 to simultaneously characterize abnormal plasma-cells and quantify bone marrow precursors. This approach was applied in nine centers to 229 cases, including 25 controls. RESULTS: Tumor plasma-cells were detected in 96.8% of cases, all exhibiting an immunoglobulin peak over 1g/L. Calculation of a plasma-cells/precursors (PC/P) ratio allowed quantification of the plasma-cell burden independently from bone marrow hemodilution. The PC/P ratio yielded the best results in terms of sensitivity (81%) and specificity (84%) for differential diagnosis between MGUS and myeloma, when compared with other criteria. Combination of both the PC/P ratio and percentage of abnormal plasma-cells allowed the best differential diagnosis, but these criteria were discordant in 25% cases. Indirect calculation of CD19 negative PC/R ratio gave the best results in terms of sensitivity (87%). CONCLUSION: This standardized multiparameter flow cytometric approach allows for the detection and quantification of bone marrow tumor plasma-cell infiltration in nearly all cases of MGUS and myeloma, independently of debris and hemodilution. This approach may also prove useful for the detection of minimal residual disease.


Assuntos
Neoplasias da Medula Óssea/patologia , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Mieloma Múltiplo/diagnóstico , Plasmócitos/patologia , Neoplasias da Medula Óssea/imunologia , Diagnóstico Diferencial , Humanos , Gamopatia Monoclonal de Significância Indeterminada/imunologia , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Plasmócitos/imunologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Immunol Lett ; 134(2): 145-9, 2011 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-20951742

RESUMO

The B-cell panel of the ninth HLDA was applied in a multicentre fashion to cryopreserved cells from 46 patients with acute lymphoblastic leukemia. The reagents were aliquoted and shipped to volunteer participants from the French Groupe d'Etude Immunologique des Leucémies (GEIL). All samples were tested in flow cytometry, and the results collected as of the strength of labeling of the leukemic clone as negative, weak or strong. Among the 64 antibodies tested, the strongest and most frequent staining was observed for CD305 (LAIR), CD229 (Ly9), CD200 (OX-2) and, to a lesser extent, CD361 (EVI2b). Details of the observations, and information about the molecules tested are provided in the manuscript as well as a summary table.


Assuntos
Antígenos CD/imunologia , Perfilação da Expressão Gênica , Imunofenotipagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/imunologia , Criança , Pré-Escolar , Regulação da Expressão Gênica/imunologia , Humanos , Lactente , Pessoa de Meia-Idade , Adulto Jovem
10.
Stem Cells ; 26(2): 312-22, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17962697

RESUMO

The HOXB4 homeoprotein is known to promote the expansion of mouse and human hematopoietic stem cells (HSCs) and progenitors of the myeloid lineages. However, the putative involvement of HOXB4 in lymphopoiesis and particularly in the expansion of early lymphoid progenitor cells has remained elusive. Based on the ability of the HOXB4 protein to passively enter hematopoietic cells, our group previously designed a long-term culture procedure of human HSCs that allows ex vivo expansion of these cells. Here, this method has been further used to investigate whether HOXB4 could cause similar expansion on cells originating from CD34(+) hematopoietic progenitor cells (HPCs) committed at various levels toward the lymphoid lineages. We provide evidence that HOXB4 protein delivery promotes the expansion of primitive HPCs that generate lymphoid progenitors. Moreover, HOXB4 acts on lymphomyeloid HPCs and committed T/natural killer HPCs but not on primary B-cell progenitors. Our results clarify the effect of HOXB4 in the early stages of human lymphopoiesis, emphasizing the contribution of this homeoprotein in the maintenance of the intrinsic lymphomyeloid differentiation potential of defined HPC subsets. Finally, this study supports the potential use of HOXB4 protein for HSC and HPC expansion in a therapeutic setting and furthers our understanding of the mechanisms of the molecular regulation of hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/fisiologia , Linfopoese/fisiologia , Fatores de Transcrição/fisiologia , Animais , Antígenos CD/metabolismo , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/fisiologia , Diferenciação Celular , Linhagem Celular , Técnicas de Cocultura , Ensaio de Unidades Formadoras de Colônias , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/farmacologia , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/fisiologia , Linfopoese/efeitos dos fármacos , Camundongos , Fenótipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/farmacologia , Transdução Genética
11.
J Soc Biol ; 200(3): 235-41, 2006.
Artigo em Francês | MEDLINE | ID: mdl-17417138

RESUMO

Expansion of human hematopoietic stem cells (HSCs) is a challenge for cellular therapy. It currently relies on either the use of recombinant cytokines or transfer of transcription factor genes. Among these, the HOXB4 homeoprotein is of particular interest since it promotes the expansion of mouse HSCs without inducing leukemia. To prevent potential deleterious side effects associated with stable HOXB4 gene transfer into the cells, we took advantage of the ability of homeoproteins to passively pass through cell membranes. We have shown that, when co-cultured with stromal cells engineered to secrete HOXB4, human stem cells and immature progenitors clearly were expanded. This expansion was associated with enhanced stem cell repopulating capacity in vivo and maintenance of pluripotentiality. The role that HOXB4 plays on stem cell expansion has also been tested on human lymphoid progenitors. We found that our model of protein transfer was also able to induce the expansion of the immature lympho-myeloid and pro-T/NK progenitors as well as of more mature NK progenitors. We then looked for synergistic activities between HOXB4 and other homeoproteins such as HOXC4. We found that HOXC4 was able to promote the expansion of human hematopoietic cells in vitro roughly as HOXB4 did and that the presence of both HOXB4 and HOXC4 molecules induced even higher expansion levels of these cells. Our method provides a basis for developing cell therapy strategies using expanded HSCs that are not genetically modified.


Assuntos
Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Animais , Divisão Celular , Linhagem Celular/metabolismo , Linhagem Celular/virologia , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Técnicas de Cocultura , Vetores Genéticos/genética , Hematopoese , Células-Tronco Hematopoéticas/efeitos dos fármacos , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/farmacologia , Humanos , Lentivirus/genética , Linfócitos/citologia , Camundongos , Modelos Biológicos , Transporte Proteico , Proteínas Recombinantes de Fusão/fisiologia , Fatores de Transcrição/química , Transdução Genética
13.
Nat Med ; 9(11): 1423-7, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14578882

RESUMO

Expansion of human hematopoietic stem cells (HSCs) is a major challenge in cellular therapy, and currently relies on the use of recombinant cytokines or on gene transfer of transcription factors. Of these, the HOXB4 homeoprotein protein is of particular interests as it promotes the expansion of mouse HSCs without inducing the development of leukemia. To eliminate any deleterious effects that might be associated with stable HOXB4 gene transfer into human cells, we took advantage of the ability of HOX proteins to passively translocate through cell membranes. Here we show that when cultured on stromal cells genetically engineered to secrete HOXB4, human long-term culture-initiating cells (LTC-ICs) and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mouse repopulating cells (SRCs) were expanded by more than 20- and 2.5-fold, respectively, over their input numbers. This expansion was associated with enhanced stem cell repopulating capacity in vivo and maintenance of pluripotentiality. This method provides a basis for developing cell therapy strategies using expanded HSCs that are not genetically modified.


Assuntos
Divisão Celular/fisiologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Técnicas de Cocultura , Humanos , Camundongos
14.
Mol Ther ; 6(5): 673-7, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12436963

RESUMO

Gene therapy using permanent modifications of hematopoietic stem cells (HSC) has increasing potential applications for both genetic and acquired diseases. Considerable progress has been made recently in gene transfer to HSC by the use of lentivirus-derived vectors, which have the capacity to transduce noncycling cells. However, overall efficiency of HSC transduction reported so far is still not sufficient for numerous applications. We describe here an improved HSC transduction protocol, using the previously described lentiviral vector, that leads to more than 90% transduction of human CD34+ cells from cord blood, including NOD-LtSz-scid/scid repopulating cells. Moreover, under the same conditions, we transduce more than 75% and 80% of CD34+ cells mobilized in peripheral blood and from bone marrow, respectively. We further show that transgene expression is stable through time and hematopoietic cell differentiation in vitro as well as in vivo. Such a high HSC transduction efficiency opens new opportunities for both gene therapy applications and functional studies of regulator proteins of hematopoiesis.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Transgenes , Animais , Antígenos CD34/biossíntese , Antígenos CD34/genética , Células da Medula Óssea/metabolismo , Separação Celular , Sangue Fetal/citologia , Citometria de Fluxo , Proteínas de Fluorescência Verde , Hematopoese , Humanos , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA