Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Semin Hematol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38782635

RESUMO

Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by profound alterations and defects in the T-cell compartment. This observation has gained renewed interest as T-cell treatment strategies, which are successfully applied in more aggressive B-cell malignancies, have yielded disappointing results in CLL. Despite ongoing efforts to understand and address the observed T-cell defects, the exact mechanisms and nature underlying this dysfunction remain largely unknown. In this review, we examine the supporting signals from T cells to CLL cells in the lymph node niche, summarize key findings on T-cell functional defects, delve into potential underlying causes, and explore novel strategies for reversing these deficiencies. Our goal is to identify strategies aimed at resolving CLL-induced T-cell dysfunction which, in the future, will enhance the efficacy of autologous T-cell-based therapies for CLL patients.

2.
EMBO J ; 43(8): 1445-1483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499786

RESUMO

Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor. Here, we establish that human and mouse TREG cells express Fe-regulatory genes, including that encoding ferritin heavy chain (FTH), at relatively high levels compared to conventional T helper cells. We show that FTH expression in TREG cells is essential for immune homeostasis. Mechanistically, FTH supports TET-catalyzed demethylation of CpG-rich sequences CNS1 and 2 in the FOXP3 locus, thereby promoting FOXP3 transcription and TREG cell stability. This process, which is essential for TREG lineage stability and function, limits the severity of autoimmune neuroinflammation and infectious diseases, and favors tumor progression. These findings suggest that the regulation of intracellular iron by FTH is a stable property of TREG cells that supports immune homeostasis and limits the pathological outcomes of immune-mediated inflammation.


Assuntos
Apoferritinas , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Apoferritinas/genética , Apoferritinas/metabolismo , Linhagem da Célula/genética , Citosina/metabolismo , Fatores de Transcrição Forkhead , Ferro/metabolismo
3.
Cancer Immunol Res ; 11(9): 1237-1252, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37368791

RESUMO

Vγ9Vδ2 T cells are effector cells with proven antitumor efficacy against a broad range of cancers. This study aimed to assess the antitumor activity and safety of a bispecific antibody directing Vγ9Vδ2 T cells to EGFR-expressing tumors. An EGFR-Vδ2 bispecific T-cell engager (bsTCE) was generated, and its capacity to activate Vγ9Vδ2 T cells and trigger antitumor activity was tested in multiple in vitro, in vivo, and ex vivo models. Studies to explore safety were conducted using cross-reactive surrogate engagers in nonhuman primates (NHP). We found that Vγ9Vδ2 T cells from peripheral blood and tumor specimens of patients with EGFR+ cancers had a distinct immune checkpoint expression profile characterized by low levels of PD-1, LAG-3, and TIM-3. Vγ9Vδ2 T cells could be activated by EGFR-Vδ2 bsTCEs to mediate lysis of various EGFR+ patient-derived tumor samples, and substantial tumor growth inhibition and improved survival were observed in in vivo xenograft mouse models using peripheral blood mononuclear cells (PBMC) as effector cells. EGFR-Vδ2 bsTCEs exerted preferential activity toward EGFR+ tumor cells and induced downstream activation of CD4+ and CD8+ T cells and natural killer (NK) cells without concomitant activation of suppressive regulatory T cells observed with EGFR-CD3 bsTCEs. Administration of fully cross-reactive and half-life extended surrogate engagers to NHPs did not trigger signals in the safety parameters that were assessed. Considering the effector and immune-activating properties of Vγ9Vδ2 T cells, the preclinical efficacy data and acceptable safety profile reported here provide a solid basis for testing EGFR-Vδ2 bsTCEs in patients with EGFR+ malignancies.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Camundongos , Animais , Leucócitos Mononucleares , Receptores de Antígenos de Linfócitos T gama-delta , Neoplasias/tratamento farmacológico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Imunidade , Receptores ErbB , Ativação Linfocitária
4.
Front Immunol ; 14: 1105103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969261

RESUMO

Introduction: MISTRG mice have been genetically modified to allow development of a human myeloid compartment from engrafted human CD34+ haemopoietic stem cells, making them particularly suited to study the human innate immune system in vivo. Here, we characterized the human neutrophil population in these mice to establish a model that can be used to study the biology and contribution in immune processes of these cells in vivo. Methods and results: We could isolate human bone marrow neutrophils from humanized MISTRG mice and confirmed that all neutrophil maturation stages from promyelocytes (CD11b-CD16-) to end-stage segmented cells (CD11b+CD16+) were present. We documented that these cells possessed normal functional properties, including degranulation, reactive oxygen species production, adhesion, and antibody-dependent cellular cytotoxicity towards antibody-opsonized tumor cells ex vivo. The acquisition of functional capacities positively correlated with the maturation state of the cell. We found that human neutrophils were retained in the bone marrow of humanized MISTRG mice during steady state. However, the mature segmented CD11b+CD16+ human neutrophils were released from the bone marrow in response to two well-established neutrophil-mobilizing agents (i.e., G-CSF and/or CXCR4 antagonist Plerixafor). Moreover, the neutrophil population in the humanized MISTRG mice actively reacted to thioglycolate-induced peritonitis and could infiltrate implanted human tumors, as shown by flow cytometry and fluorescent microscopy. Discussion: These results show that functional human neutrophils are generated and can be studied in vivo using the humanized MISTRG mice, providing a model to study the various functions of neutrophils in inflammation and in tumors.


Assuntos
Compostos Heterocíclicos , Neutrófilos , Humanos , Camundongos , Animais , Mobilização de Células-Tronco Hematopoéticas , Medula Óssea , Imunidade
5.
Eur J Immunol ; 52(11): 1819-1828, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36189878

RESUMO

Anti-viral T-cell responses are usually directed against a limited set of antigens, but often contain many T cells expressing different T-cell receptors (TCRs). Identical TCRs found within virus-specific T-cell populations in different individuals are known as public TCRs, but also TCRs highly-similar to these public TCRs, with only minor variations in amino acids on specific positions in the Complementary Determining Regions (CDRs), are frequently found. However, the degree of freedom at these positions was not clear. In this study, we used the HLA-A*02:01-restricted EBV-LMP2FLY -specific public TCR as model and modified the highly-variable position 5 of the CDR3ß sequence with all 20 amino acids. Our results demonstrate that amino acids at this particular position in the CDR3ß region of this TCR are completely inter-changeable, without loss of TCR function. We show that the inability to find certain variants in individuals is explained by their lower recombination probability rather than by steric hindrance.


Assuntos
Aminoácidos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta
6.
Front Immunol ; 13: 851868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401538

RESUMO

Since multiple different T-cell receptor (TCR) sequences can bind to the same peptide-MHC combination and the number of TCR-sequences that can theoretically be generated even exceeds the number of T cells in a human body, the likelihood that many public identical (PUB-I) TCR-sequences frequently contribute to immune responses has been estimated to be low. Here, we quantitatively analyzed the TCR-repertoires of 190 purified virus-specific memory T-cell populations, directed against 21 epitopes of Cytomegalovirus, Epstein-Barr virus and Adenovirus isolated from 29 healthy individuals, and determined the magnitude, defined as prevalence within the population and frequencies within individuals, of PUB-I TCR and of TCR-sequences that are highly-similar (PUB-HS) to these PUB-I TCR-sequences. We found that almost one third of all TCR nucleotide-sequences represented PUB-I TCR amino-acid (AA) sequences and found an additional 12% of PUB-HS TCRs differing by maximally 3 AAs. We illustrate that these PUB-I and PUB-HS TCRs were structurally related and contained shared core-sequences in their TCR-sequences. We found a prevalence of PUB-I and PUB-HS TCRs of up to 50% among individuals and showed frequencies of virus-specific PUB-I and PUB-HS TCRs making up more than 10% of each virus-specific T-cell population. These findings were confirmed by using an independent TCR-database of virus-specific TCRs. We therefore conclude that the magnitude of the contribution of PUB-I and PUB-HS TCRs to these virus-specific T-cell responses is high. Because the T cells from these virus-specific memory TCR-repertoires were the result of successful control of the virus in these healthy individuals, these PUB-HS TCRs and PUB-I TCRs may be attractive candidates for immunotherapy in immunocompromised patients that lack virus-specific T cells to control viral reactivation.


Assuntos
Infecções por Vírus Epstein-Barr , Citomegalovirus , Herpesvirus Humano 4 , Humanos , Receptores de Antígenos de Linfócitos T , Linfócitos T
7.
J Infect Dis ; 226(5): 833-842, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-32808978

RESUMO

BACKGROUND: Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs) is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated malignancies of latency type II/III that express EBV antigens (LMP1/2). Patients who are HLA-A*01:01 positive could benefit from such products, since no T cells recognizing any EBV-derived peptide in this common HLA allele have been found thus far. METHODS: HLA-A*01:01-restricted EBV-LMP2-specific T cells were isolated using peptide major histocompatibility complex (pMHC) tetramers. Functionality was assessed by production of interferon gamma (IFN-γ) and cytotoxicity when stimulated with EBV-LMP2-expressing cell lines. Functionality of primary T cells transduced with HLA-A*01:01-restricted EBV-LMP2-specific TCRs was optimized by knocking out the endogenous TCRs of primary T cells (∆TCR) using CRISPR-Cas9 technology. RESULTS: EBV-LMP2-specific T cells were successfully isolated and their TCRs were characterized. TCR gene transfer in primary T cells resulted in specific pMHC tetramer binding and reactivity against EBV-LMP2-expressing cell lines. The mean fluorescence intensity of pMHC-tetramer binding was increased 1.5-2 fold when the endogenous TCRs of CD8+ T cells was knocked out. CD8+/∆TCR T cells modified to express EBV-LMP2-specific TCRs showed IFN-γ secretion and cytotoxicity toward EBV-LMP2-expressing malignant cell lines. CONCLUSIONS: We isolated the first functional HLA-A*01:01-restricted EBV-LMP2-specific T-cell populations and TCRs, which can potentially be used in future TCR gene therapy to treat EBV-associated latency type II/III malignancies.


Assuntos
Infecções por Vírus Epstein-Barr , Antígenos HLA-A , Herpesvirus Humano 4 , Receptores de Antígenos de Linfócitos T , Proteínas da Matriz Viral , Humanos , Interferon gama , Receptores de Antígenos de Linfócitos T/genética , Proteínas da Matriz Viral/imunologia
8.
J Immunol ; 208(2): 384-395, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34937744

RESUMO

CD4+CD25+FOXP3+ regulatory T (Treg) cells control immunological tolerance. Treg cells are generated in the thymus (tTreg) or in the periphery. Their superior lineage fidelity makes tTregs the preferred cell type for adoptive cell therapy (ACT). How human tTreg cells develop is incompletely understood. By combining single-cell transcriptomics and flow cytometry, we in this study delineated three major Treg developmental stages in the human thymus. At the first stage, which we propose to name pre-Treg I, cells still express lineage-inappropriate genes and exhibit signs of TCR signaling, presumably reflecting recognition of self-antigen. The subsequent pre-Treg II stage is marked by the sharp appearance of transcription factor FOXO1 and features induction of KLF2 and CCR7, in apparent preparation for thymic exit. The pre-Treg II stage can further be refined based on the sequential acquisition of surface markers CD31 and GPA33. The expression of CD45RA, finally, completes the phenotype also found on mature recent thymic emigrant Treg cells. Remarkably, the thymus contains a substantial fraction of recirculating mature effector Treg cells, distinguishable by expression of inflammatory chemokine receptors and absence of CCR7. The developmental origin of these cells is unclear and warrants caution when using thymic tissue as a source of stable cells for ACT. We show that cells in the major developmental stages can be distinguished using the surface markers CD1a, CD27, CCR7, and CD39, allowing for their viable isolation. These insights help identify fully mature tTreg cells for ACT and can serve as a basis for further mechanistic studies into tTreg development.


Assuntos
Diferenciação Celular/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Timócitos/citologia , Timo/citologia , Células Cultivadas , Pré-Escolar , Proteína Forkhead Box O1/metabolismo , Humanos , Tolerância Imunológica/imunologia , Fatores de Transcrição Kruppel-Like/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Glicoproteínas de Membrana/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA-Seq/métodos , Receptores CCR7/metabolismo , Análise de Célula Única , Timo/imunologia , Transcriptoma/genética , Sequenciamento do Exoma
9.
Front Immunol ; 12: 630440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854504

RESUMO

T-cell products derived from third-party donors are clinically applied, but harbor the risk of off-target toxicity via induction of allo-HLA cross-reactivity directed against mismatched alleles. We used third-party donor-derived virus-specific T cells as model to investigate whether virus-specificity, HLA restriction and/or HLA background can predict the risk of allo-HLA cross-reactivity. Virus-specific CD8pos T cells were isolated from HLA-A*01:01/B*08:01 or HLA-A*02:01/B*07:02 positive donors. Allo-HLA cross-reactivity was tested using an EBV-LCL panel covering 116 allogeneic HLA molecules and confirmed using K562 cells retrovirally transduced with single HLA-class-I alleles of interest. HLA-B*08:01-restricted T cells showed the highest frequency and diversity of allo-HLA cross-reactivity, regardless of virus-specificity, which was skewed toward multiple recurrent allogeneic HLA-B molecules. Thymic selection for other HLA-B alleles significantly influenced the level of allo-HLA cross-reactivity mediated by HLA-B*08:01-restricted T cells. These results suggest that the degree and specificity of allo-HLA cross-reactivity by T cells follow rules. The risk of off-target toxicity after infusion of incompletely matched third-party donor-derived virus-specific T cells may be reduced by selection of T cells with a specific HLA restriction and background.


Assuntos
Antígenos HLA/imunologia , Linfócitos T/imunologia , Vírus/imunologia , Alelos , Reações Cruzadas , Citomegalovirus/imunologia , Antígenos HLA/genética , Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 4/imunologia , Teste de Histocompatibilidade , Humanos , Imunoterapia Adotiva , Células K562 , Doadores de Tecidos
10.
Eur J Immunol ; 51(6): 1377-1389, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33728639

RESUMO

The Ig superfamily protein glycoprotein A33 (GPA33) has been implicated in immune dysregulation, but little is known about its expression in the immune compartment. Here, we comprehensively determined GPA33 expression patterns on human blood leukocyte subsets, using mass and flow cytometry. We found that GPA33 was expressed on fractions of B, dendritic, natural killer and innate lymphoid cells. Most prominent expression was found in the CD4+ T cell compartment. Naïve and CXCR5+ regulatory T cells were GPA33high , and naïve conventional CD4+ T cells expressed intermediate GPA33 levels. The expression pattern of GPA33 identified functional heterogeneity within the CD4+ central memory T cell (Tcm) population. GPA33+ CD4+ Tcm cells were fully undifferentiated, bona fide Tcm cells that lack immediate effector function, whereas GPA33- Tcm cells exhibited rapid effector functions and may represent an early stage of differentiation into effector/effector memory T cells before loss of CD62L. Expression of GPA33 in conventional CD4+ T cells suggests a role in localization and/or preservation of an undifferentiated state. These results form a basis to study the function of GPA33 and show it to be a useful marker to discriminate between different cellular subsets, especially in the CD4+ T cell lineage.


Assuntos
Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/imunologia , Leucócitos Mononucleares/imunologia , Glicoproteínas de Membrana/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Diferenciação Celular , Linhagem da Célula , Separação Celular , Citometria de Fluxo , Células HEK293 , Humanos , Imunidade Inata , Memória Imunológica , Glicoproteínas de Membrana/genética , Receptores CXCR5/metabolismo
11.
Immunol Lett ; 239: 96-112, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33676975

RESUMO

Regulatory T (Treg) cells are essential for immunological tolerance and can be used to suppress unwanted or excessive immune responses through adoptive cellular therapy. It is increasingly clear that many subsets of Treg cells exist, which have different functions and reside in different locations. Treg cell therapies may benefit from tailoring the selected subset to the tissue that must be protected as well as to characteristics of the immune response that must be suppressed, but little attention is given to this topic in current therapies. Here, we will discuss how three major axes of heterogeneity can be discerned among the Treg cell population, which determine function and lineage fidelity. A first axis relates to the developmental route, as Treg cells can be generated from immature T cells in the thymus or from already mature Tconv cells in the immunological periphery. Heterogeneity furthermore stems from activation history (naïve or effector) and location (lymphoid or peripheral tissues). Each of these axes bestows specific properties on Treg cells, which are further refined by additional processes leading to yet further variation. A critical aspect impacting on Treg cell heterogeneity is TCR specificity, which determines when and where Treg cells are generated as well as where they exhibit their effector functions. We will discuss the implications of this heterogeneity and the role of the TCR for the design of next generation adoptive cellular therapy with Treg cells.


Assuntos
Imunofenotipagem , Imunoterapia Adotiva/métodos , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Modelos Animais de Doenças , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/terapia , Humanos , Tolerância Imunológica , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/transplante , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante
12.
Oncoimmunology ; 10(1): 1860482, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33537169

RESUMO

Metastatic renal cell carcinoma (RCC) has a poor prognosis. Recent advances have shown beneficial responses to immune checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies. As only a subset of RCC patients respond, alternative strategies should be explored. Patients refractory to anti-PD-1 therapy may benefit from autologous tumor-infiltrating lymphocyte (TIL) therapy. Even though efficient TIL expansion was reported from RCC lesions, it is not well established how many RCC TIL products are tumor-reactive, how well they produce pro-inflammatory cytokines in response to autologous tumors, and whether their response correlates with the presence of specific immune cells in the tumor lesions. We here compared the immune infiltrate composition of RCC lesions with that of autologous kidney tissue of 18 RCC patients. Tcell infiltrates were increased in the tumor lesions, and CD8+ Tcell infiltrates were primarily of effector memory phenotype. Nine out of 16 (56%) tested TIL products we generated were tumor-reactive, as defined by CD137 upregulation after exposure to autologous tumor digest. Tumor reactivity was found in particular in TIL products originating from tumors with ahigh percentage of infiltrated Tcells compared to autologous kidney, and increased CD25 expression on CD8+ Tcells. Importantly, although TIL products had the capacity to produce the key effector cytokines IFN-γ, TNF-α or IL-2, they failed to produce significant amounts in response to autologous tumor digests. In conclusion, TIL products from RCC lesions contain tumor-reactive Tcells. Their restricted tumor-specific cytokine production requires further investigation of immunosuppressive factors in RCC and subsequent optimization of RCC-derived TIL culture conditions.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Linfócitos T CD8-Positivos , Citotoxicidade Imunológica , Humanos , Interleucina-2 , Linfócitos do Interstício Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral
13.
Nat Metab ; 2(10): 1046-1061, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958937

RESUMO

Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3-TNFR2-activated tTreg cells is driven by PI3-kinase-mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting.


Assuntos
Glicólise/efeitos dos fármacos , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/metabolismo , Complexo CD3/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Humanos , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Metaboloma , Fosfatidilinositol 3-Quinases/metabolismo , RNA/química , Receptores Tipo II do Fator de Necrose Tumoral/efeitos dos fármacos , Análise de Sequência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
14.
Oncoimmunology ; 8(11): e1648170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646094

RESUMO

Non-small cell lung cancer (NSCLC) is the second most prevalent type of cancer. With the current treatment regimens, the mortality rate remains high. Therefore, better therapeutic approaches are necessary. NSCLCs generally possess many genetic mutations and are well infiltrated by T cells (TIL), making TIL therapy an attractive option. Here we show that T cells from treatment naive, stage I-IVa NSCLC tumors can effectively be isolated and expanded, with similar efficiency as from normal lung tissue. Importantly, 76% (13/17) of tested TIL products isolated from NSCLC lesions exhibited clear reactivity against primary tumor digests, with 0.5%-30% of T cells producing the inflammatory cytokine Interferon (IFN)-γ. Both CD4+ and CD8+ T cells displayed tumor reactivity. The cytokine production correlated well with CD137 and CD40L expression. Furthermore, almost half (7/17) of the TIL products contained polyfunctional T cells that produced Tumor Necrosis Factor (TNF)-α and/or IL-2 in addition to IFN-γ, a hallmark of effective immune responses. Tumor-reactivity in the TIL products correlated with high percentages of CD103+CD69+CD8+ T cell infiltrates in the tumor lesions, with PD-1hiCD4+ T cells, and with FoxP3+CD25+CD4+ regulatory T cell infiltrates, suggesting that the composition of T cell infiltrates may predict the level of tumor reactivity. In conclusion, the effective generation of tumor-reactive and polyfunctional TIL products implies that TIL therapy will be a successful treatment regimen for NSCLC patients.

15.
Sci Rep ; 9(1): 5247, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918307

RESUMO

During pregnancy, maternal T cells can enter the foetus, leading to maternal-foetal chimerism. This phenomenon may affect how leukaemia patients respond to transplantation therapy using stem cells from cord blood (CB). It has been proposed that maternal T cells, primed to inherited paternal HLAs, are present in CB transplants and help to suppress leukaemic relapse. Several studies have reported evidence for the presence of maternal T cells in most CBs at sufficiently high numbers to lend credence to this idea. We here aimed to functionally characterise maternal T cells from CB. To our surprise, we could not isolate viable maternal cells from CB even after using state-of-the-art enrichment techniques that allow detection of viable cells in heterologous populations at frequencies that were several orders of magnitude lower than reported frequencies of maternal T cells in CB. In support of these results, we could only detect maternal DNA in a minority of samples and at insufficient amounts for reliable quantification through a sensitive PCR-based assay to measure In/Del polymorphisms. We conclude that maternal microchimerism is far less prominent than reported, at least in our cohort of CBs, and discuss possible explanations and implications.


Assuntos
Sangue Fetal/metabolismo , Células Cultivadas , Feminino , Citometria de Fluxo , Antígenos HLA/metabolismo , Humanos , Reação em Cadeia da Polimerase , Polimorfismo Genético/genética , Gravidez , Linfócitos T/metabolismo , Temperatura
16.
Nat Immunol ; 20(4): 471-481, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30778241

RESUMO

Foxp3+ regulatory T cells (Treg cells) are crucial for the maintenance of immune homeostasis both in lymphoid tissues and in non-lymphoid tissues. Here we demonstrate that the ability of intestinal Treg cells to constrain microbiota-dependent interleukin (IL)-17-producing helper T cell (TH17 cell) and immunoglobulin A responses critically required expression of the transcription factor c-Maf. The terminal differentiation and function of several intestinal Treg cell populations, including RORγt+ Treg cells and follicular regulatory T cells, were c-Maf dependent. c-Maf controlled Treg cell-derived IL-10 production and prevented excessive signaling via the kinases PI(3)K (phosphatidylinositol-3-OH kinase) and Akt and the metabolic checkpoint kinase complex mTORC1 (mammalian target of rapamycin) and expression of inflammatory cytokines in intestinal Treg cells. c-Maf deficiency in Treg cells led to profound dysbiosis of the intestinal microbiota, which when transferred to germ-free mice was sufficient to induce exacerbated intestinal TH17 responses, even in a c-Maf-competent environment. Thus, c-Maf acts to preserve the identity and function of intestinal Treg cells, which is essential for the establishment of host-microbe symbiosis.


Assuntos
Imunoglobulina A/biossíntese , Intestinos/imunologia , Microbiota , Proteínas Proto-Oncogênicas c-maf/fisiologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Células Cultivadas , Colite/imunologia , Citocinas/metabolismo , Disbiose , Regulação da Expressão Gênica , Homeostase , Interleucina-10/biossíntese , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-maf/genética , Proteínas Proto-Oncogênicas c-maf/metabolismo , Linfócitos T Reguladores/enzimologia
17.
Nat Immunol ; 19(6): 538-546, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29777219

RESUMO

Immune responses in tissues are constrained by the physiological properties of the tissue involved. Tissue-resident memory T cells (TRM cells) are a recently discovered lineage of T cells specialized for life and function within tissues. Emerging evidence has shown that TRM cells have a special role in the control of solid tumors. A high frequency of TRM cells in tumors correlates with favorable disease progression in patients with cancer, and studies of mice have shown that TRM cells are necessary for optimal immunological control of solid tumors. Here we describe what defines TRM cells as a separate lineage and how these cells are generated. Furthermore, we discuss the properties that allow TRM cells to operate in normal and transformed tissues, as well as implications for the treatment of patients with cancer.


Assuntos
Memória Imunológica/imunologia , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Humanos , Camundongos
18.
19.
J Clin Invest ; 127(4): 1215-1217, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28319046

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) remains the only treatment option for several severe hematological malignancies. The development of graft-versus-host disease (GVHD) is a common complication of the procedure and results when donor T cells become activated against recipient-specific antigens. The factors that drive the alloreactive T cell response are not completely understood. In this issue of the JCI, Chung and colleagues present evidence that stromal cells within lymphoid tissue express the Notch ligands Delta-like 1/4 (DLL1 and DLL4), which in turn directly activate T cells. Importantly, inhibition of DLL1/DLL4-mediated Notch signaling in murine HSCT models dramatically reduced GVHD and improved graft survival.


Assuntos
Sobrevivência de Enxerto/imunologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Aloenxertos , Animais , Proteínas de Ligação ao Cálcio , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas de Membrana/imunologia , Camundongos , Receptores Notch/imunologia , Linfócitos T/patologia
20.
Immunity ; 43(5): 831-3, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26588772

RESUMO

The Notch pathway is an attractive therapeutic target for treatment of cancer and T cell-mediated pathology, but Notch inhibition leads to many side effects. Pinnell et al. (2015) demonstrate that oncogenic functions can be separated biochemically from other functions of Notch, opening new options for more selective targeting of this pathway.


Assuntos
Leucemia/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Receptor Notch1/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA