Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 41(1): 97, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287686

RESUMO

BACKGROUND: Treatment of Diffuse Large B Cell Lymphoma (DLBCL) patients with rituximab and the CHOP treatment regimen is associated with frequent intrinsic and acquired resistance. However, treatment with a CD47 monoclonal antibody in combination with rituximab yielded high objective response rates in patients with relapsed/refractory DLBCL in a phase I trial. Here, we report on a new bispecific and fully human fusion protein comprising the extracellular domains of SIRPα and 4-1BBL, termed DSP107, for the treatment of DLBCL. DSP107 blocks the CD47:SIRPα 'don't eat me' signaling axis on phagocytes and promotes innate anticancer immunity. At the same time, CD47-specific binding of DSP107 enables activation of the costimulatory receptor 4-1BB on activated T cells, thereby, augmenting anticancer T cell immunity. METHODS: Using macrophages, polymorphonuclear neutrophils (PMNs), and T cells of healthy donors and DLBCL patients, DSP107-mediated reactivation of immune cells against B cell lymphoma cell lines and primary patient-derived blasts was studied with phagocytosis assays, T cell activation and cytotoxicity assays. DSP107 anticancer activity was further evaluated in a DLBCL xenograft mouse model and safety was evaluated in cynomolgus monkey. RESULTS: Treatment with DSP107 alone or in combination with rituximab significantly increased macrophage- and PMN-mediated phagocytosis and trogocytosis, respectively, of DLBCL cell lines and primary patient-derived blasts. Further, prolonged treatment of in vitro macrophage/cancer cell co-cultures with DSP107 and rituximab decreased cancer cell number by up to 85%. DSP107 treatment activated 4-1BB-mediated costimulatory signaling by HT1080.4-1BB reporter cells, which was strictly dependent on the SIRPα-mediated binding of DSP107 to CD47. In mixed cultures with CD47-expressing cancer cells, DSP107 augmented T cell cytotoxicity in vitro in an effector-to-target ratio-dependent manner. In mice with established SUDHL6 xenografts, the treatment with human PBMCs and DSP107 strongly reduced tumor size compared to treatment with PBMCs alone and increased the number of tumor-infiltrated T cells. Finally, DSP107 had an excellent safety profile in cynomolgus monkeys. CONCLUSIONS: DSP107 effectively (re)activated innate and adaptive anticancer immune responses and may be of therapeutic use alone and in combination with rituximab for the treatment of DLBCL patients.


Assuntos
Antígeno CD47/metabolismo , Imunidade Inata/imunologia , Receptores Imunológicos/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos
2.
Mol Cancer Ther ; 19(2): 513-524, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31871267

RESUMO

Cytotoxic T-lymphocyte antigen 4 (CTLA4)-FasL, a homo-hexameric signal converter protein, is capable of inducing robust apoptosis in malignant cells of the B-cell lineage expressing its cognate B7 and Fas targets, while sparing nonmalignant ones. This fusion protein's striking proapoptotic efficacy stems from its complementary abilities to coordinately activate apoptotic signals and abrogate antiapoptotic ones. A limiting factor in translating FasL or Fas receptor agonists into the clinic has been lethal hepatotoxicity. Here, we establish CTLA4-FasL's in vivo efficacy in multiple murine and xenograft models, for both systemic and subcutaneous tumors. Significantly, good laboratory practice (GLP) toxicology studies in mice indicate that CTLA4-FasL given repeatedly at doses up to five times the effective dose was well-tolerated and resulted in no significant adverse events. An equivalent single dose of CTLA4-FasL administered to nonhuman primates was also well-tolerated, albeit with a moderate dose-dependent leukopenia that was completely reversible. Interestingly, monkey peripheral blood mononuclear cells were more sensitive to CTLA4-FasL-induced apoptosis when tested in vitro. In both species, there was short-term elevation in serum levels of IL6, IL2, and IFNγ, although this was not associated with clinical signs of proinflammatory cytokine release, and further, this cytokine elevation could be completely prevented by dexamethasone premedication. Liver toxicity was not observed in either species, as confirmed by serum liver enzyme levels and histopathologic assessment. In conclusion, CTLA4-FasL emerges from animal model studies as an effective and safe agent for targeted FasL-mediated treatment of B7-expressing aggressive B-cell lymphomas.


Assuntos
Antígeno CTLA-4/administração & dosagem , Proteína Ligante Fas/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Sequência de Aminoácidos , Animais , Antígeno CTLA-4/imunologia , Proteína Ligante Fas/efeitos adversos , Proteína Ligante Fas/imunologia , Proteína Ligante Fas/farmacocinética , Feminino , Humanos , Células Jurkat , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Primatas , Distribuição Aleatória , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Lett ; 400: 99-109, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455246

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) demonstrates specific anti-cancer activity, but insufficient efficacy in patients. A fusion protein Fn14·TRAIL, that combines soluble TRAIL molecule with a specific TWEAK receptor Fn14, is a better apoptosis-inducer for hepatocellular carcinomas than soluble TRAIL. However, Fn14·TRAIL does not effectively induce apoptosis in tumors of the lymphoid origin. As malignant cell apoptosis is strongly enhanced by secondary oligomerization of TRAIL, we tested the hypothesis that soluble Fn14·TRAIL can be oligomerized and become more active by adding TWEAK, a cytokine secreted in the tumor environment. We revealed that TWEAK and Fn14·TRAIL spontaneously formed a stable complex that induced apoptosis of malignant lymphoblasts earlier and more efficiently than TRAIL. The TWEAK-modified Fn14·TRAIL oligomer bound to target cells and delivered apoptotic signaling via TRAIL receptors. The oligomer induced faster and stronger cleavage of procaspase-8, -9, and -3; BID; poly-ADP ribose polymerase; and RIP compared to TRAIL. The oligomer also reduced expression of the anti-apoptotic proteins c-FLIP short and cIAP-1. Our data indicate that Fn14·TRAIL can be converted into a highly effective TRAIL oligomer upon binding to TWEAK.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia de Células T/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fatores de Necrose Tumoral/metabolismo , Antineoplásicos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Citocina TWEAK , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Humanos , Células Jurkat , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Leucemia de Células T/patologia , Ligação Proteica , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fatores de Tempo , Transfecção , Microambiente Tumoral , Fatores de Necrose Tumoral/genética
4.
J Hematol Oncol ; 7: 64, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25227919

RESUMO

Non-Hodgkin lymphomas (NHLs) account for 4% of all malignancies. 5-year survival rate increased to 50% with new treatment modalities, however there is need for new effective treatment for the more aggressive, relapsing forms. Recently, CTLA4-FasL, that can bind to B7 and Fas receptor (Fas), was shown to induce robust apoptosis of cell lines originating from B cell lymphomas expressing both B7 and Fas, by activating pro-apoptotic signals in parallel to abrogating anti-apoptotic ones. The present study focuses on the unique properties of CTLA4-FasL as a potent apoptosis inducer of malignant cells in-vitro and in a xenograft model. CTLA4-FasL was found to naturally form a stable homo-hexamer. CTLA4-FasL induces robust apoptosis of a large variety of malignant cells while relatively sparing non-malignant ones, being more efficient when both receptors (B7 and Fas) are expressed on target cells. Even in non-B7 expressing cells, CTLA4-FasL exhibited better apoptotic activity than its parts, alone or in combination, however, only in B7 expressing cells apoptosis occurs at low concentrations and CTLA4-FasL induces activation of apoptotic signals and reduces anti-apoptotic ones. Importantly, CTLA4-FasL efficiently inhibited the growth of human B cell lineage tumors in a xenograft model, by provoking tumor cells' apoptosis. Thus, CTLA4-FasL, a natural homo-hexamer protein, induces robust apoptosis of malignant cells, in-vitro and in-vivo. In B-cell lymphoma, its potency stems from the combination of its synergistic effect of activating the caspases while abrogating the anti-apoptotic signaling, with its unique hexameric structure, making CTLA4-FasL a promising candidate for aggressive B cell lymphomas treatment.


Assuntos
Apoptose/efeitos dos fármacos , Antígeno CTLA-4/uso terapêutico , Reagentes de Ligações Cruzadas/uso terapêutico , Proteína Ligante Fas/uso terapêutico , Linfoma de Células B/patologia , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Western Blotting , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Reagentes de Ligações Cruzadas/síntese química , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Focalização Isoelétrica , Camundongos , Camundongos Nus , Proteínas Recombinantes de Fusão/síntese química , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor fas/metabolismo
5.
PLoS One ; 8(10): e77050, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130833

RESUMO

BACKGROUND: New strategies for the treatment of hepatocellular carcinoma (HCC) are needed, given that currently available chemotherapeutics are inefficient. Since tumor growth reflects the net balance between pro-proliferative and death signaling, agents shifting the equilibrium toward the latter are of considerable interest. The TWEAK:Fn14 signaling axis promotes tumor cell proliferation and tumor angiogenesis, while TRAIL:TRAIL-receptor (TRAIL-R) interactions selectively induce apoptosis in malignant cells. Fn14•TRAIL, a fusion protein bridging these two pathways, has the potential to inhibit tumor growth, by interfering with TWEAK:Fn14 signaling, while at the same time enforcing TRAIL:TRAIL-R-mediated apoptosis. Consequently, Fn14•TRAIL's capacity to inhibit HCC growth was tested. RESULTS: Fn14•TRAIL induced robust apoptosis of multiple HCC cell lines, while sparing non-malignant hepatocyte cell lines. Differential susceptibility to this agent did not correlate with expression levels of TRAIL, TRAIL-R, TWEAK and Fn14 by these lines. Fn14•TRAIL was more potent than soluble TRAIL, soluble Fn14, or a combination of the two. The requirement of both of Fn14•TRAIL's molecular domains for function was established using blocking antibodies directed against each of them. Subcutaneous injection of Fn14•TRAIL abrogated HCC growth in a xenograft model, and was well tolerated by the mice. CONCLUSIONS: In this study, Fn14•TRAIL, a multifunctional fusion protein originally designed to treat autoimmunity, was shown to inhibit the growth of HCC, both in vitro and in vivo. The demonstration of this fusion protein's potent anti-tumor activity suggests that simultaneous targeting of two signaling axes by a single fusion can serve as a basis for highly effective anti-cancer therapies.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Receptores do Fator de Necrose Tumoral/genética , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocina TWEAK , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do Fator de Necrose Tumoral/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais/efeitos dos fármacos , Solubilidade , Ligante Indutor de Apoptose Relacionado a TNF/química , Receptor de TWEAK , Fatores de Necrose Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Exp Cell Res ; 304(2): 365-79, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15748884

RESUMO

The bifunctional enzyme UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) is essential for early embryonic development and catalyzes the rate limiting step in sialic acid biosynthesis. Although epimerase and kinase activities have been attributed to GNE, little is known about the regulation, differential expression, and subcellular localization of GNE in vivo. Mutations in GNE cause a rare inherited muscle disorder in humans called hereditary inclusion body myopathy (HIBM). However, the role of GNE in HIBM pathogenesis has not been defined yet. Here, we show that the GNE protein is expressed in various mammalian cells and tissues with highest levels found in cancer cells and liver. In human skeletal muscle, GNE protein is developmentally regulated: high levels are found in immature myoblasts but low levels in mature skeletal muscle. The GNE protein colocalizes with resident proteins of the Golgi compartment in a variety of human cells including muscle. Drug-induced disruption of the Golgi and subsequent recovery reveals co-distribution of GNE along with Golgi-targeted proteins. This subcellular localization of GNE is in good agreement with its established role as the key enzyme of sialic acid biosynthesis, since the sialylation of glycoconjugates takes place in the Golgi complex. Surprisingly, GNE is also detected in the nucleus. Upon nocodazole treatment, GNE redistributes to the cytoplasm suggesting that GNE may act as a nucleocytoplasmic shuttling protein. A regulatory role for GNE shifting between the nuclear and the Golgi compartment is proposed. Further insight into GNE regulation may promote the understanding of HIBM pathogenesis.


Assuntos
Núcleo Celular/enzimologia , Glicoconjugados/biossíntese , Complexo de Golgi/enzimologia , Complexos Multienzimáticos/metabolismo , Ácido N-Acetilneuramínico/biossíntese , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Antineoplásicos/farmacologia , Brefeldina A/farmacologia , Compartimento Celular/fisiologia , Citoplasma/enzimologia , Células HeLa , Humanos , Células Jurkat , Células K562 , Camundongos , Músculo Esquelético/enzimologia , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/enzimologia , Miosite de Corpos de Inclusão/congênito , Miosite de Corpos de Inclusão/enzimologia , Neoplasias/enzimologia , Neoplasias/fisiopatologia , Nocodazol/farmacologia , Células-Tronco Pluripotentes , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA