Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
J Immunother Cancer ; 12(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749537

RESUMO

BACKGROUND: Cancer-intrinsic type I interferon (IFN-I) production triggered by radiotherapy (RT) is mainly dependent on cytosolic double-stranded DNA (dsDNA)-mediated cGAS/STING signaling and increases cancer immunogenicity and enhances the antitumor immune response to increase therapeutic efficacy. However, cGAS/STING deficiency in colorectal cancer (CRC) may suppress the RT-induced antitumor immunity. Therefore, we aimed to evaluate the importance of the dsRNA-mediated antitumor immune response induced by RT in patients with CRC. METHODS: Cytosolic dsRNA level and its sensors were evaluated via cell-based assays (co-culture assay, confocal microscopy, pharmacological inhibition and immunofluorescent staining) and in vivo experiments. Biopsies and surgical tissues from patients with CRC who received preoperative chemoradiotherapy (neoCRT) were collected for multiplex cytokine assays, immunohistochemical analysis and SNP genotyping. We also generated a cancer-specific adenovirus-associated virus (AAV)-IFNß1 construct to evaluate its therapeutic efficacy in combination with RT, and the immune profiles were analyzed by flow cytometry and RNA-seq. RESULTS: Our studies revealed that RT stimulates the autonomous release of dsRNA from cancer cells to activate TLR3-mediated IFN-I signatures to facilitate antitumor immune responses. Patients harboring a dysfunctional TLR3 variant had reduced serum levels of IFN-I-related cytokines and intratumoral CD8+ immune cells and shorter disease-free survival following neoCRT treatment. The engineered cancer-targeted construct AAV-IFNß1 significantly improved the response to RT, leading to systematic eradication of distant tumors and prolonged survival in defective TLR3 preclinical models. CONCLUSION: Our results support that increasing cancer-intrinsic IFNß1 expression is an immunotherapeutic strategy that enhances the RT-induced antitumor immune response in locally patients with advanced CRC with dysfunctional TLR3.


Assuntos
Neoplasias Colorretais , Interferon Tipo I , Interferon beta , RNA de Cadeia Dupla , Humanos , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/imunologia , Interferon beta/metabolismo , Camundongos , Animais , Interferon Tipo I/metabolismo , Transdução de Sinais , Feminino , Masculino
2.
NPJ Vaccines ; 9(1): 95, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821980

RESUMO

Although irradiated induced-pluripotent stem cells (iPSCs) as a prophylactic cancer vaccine elicit an antitumor immune response, the therapeutic efficacy of iPSC-based cancer vaccines is not promising due to their insufficient antigenicity and the immunosuppressive tumor microenvironment. Here, we found that neoantigen-engineered iPSC cancer vaccines can trigger neoantigen-specific T cell responses to eradicate cancer cells and increase the therapeutic efficacy of RT in poorly immunogenic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). We generated neoantigen-augmented iPSCs (NA-iPSCs) by engineering AAV2 vector carrying murine neoantigens and evaluated their therapeutic efficacy in combination with radiotherapy. After administration of NA-iPSC cancer vaccine and radiotherapy, we found that ~60% of tumor-bearing mice achieved a complete response in microsatellite-stable CRC model. Furthermore, splenocytes from mice treated with NA-iPSC plus RT produced high levels of IFNγ secretion in response to neoantigens and had a greater cytotoxicity to cancer cells, suggesting that the NA-iPSC vaccine combined with radiotherapy elicited a superior neoantigen-specific T-cell response to eradicate cancer cells. The superior therapeutic efficacy of NA-iPSCs engineered by mouse TNBC neoantigens was also observed in the syngeneic immunocompetent TNBC mouse model. We found that the risk of spontaneous lung and liver metastasis was dramatically decreased by NA-iPSCs plus RT in the TNBC animal model. Altogether, these results indicated that autologous iPSC cancer vaccines engineered by neoantigens can elicit a high neoantigen-specific T-cell response, promote tumor regression, and reduce the risk of distant metastasis in combination with local radiotherapy.

3.
Cell Biosci ; 14(1): 58, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720328

RESUMO

The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, an important component of the innate immune system, is involved in the development of several diseases. Ectopic DNA-induced inflammatory responses are involved in several pathological processes. Repeated damage to tissues and metabolic organelles releases a large number of damage-associated molecular patterns (mitochondrial DNA, nuclear DNA, and exogenous DNA). The DNA fragments released into the cytoplasm are sensed by the sensor cGAS to initiate immune responses through the bridging protein STING. Many recent studies have revealed a regulatory role of the cGAS-STING signaling pathway in cardiovascular diseases (CVDs) such as myocardial infarction, heart failure, atherosclerosis, and aortic dissection/aneurysm. Furthermore, increasing evidence suggests that inhibiting the cGAS-STING signaling pathway can significantly inhibit myocardial hypertrophy and inflammatory cell infiltration. Therefore, this review is intended to identify risk factors for activating the cGAS-STING pathway to reduce risks and to simultaneously further elucidate the biological function of this pathway in the cardiovascular field, as well as its potential as a therapeutic target.

4.
Commun Biol ; 7(1): 396, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561411

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is involved in the pathogenesis of multiple cardiovascular diseases. This study elucidated the biological function of lysine acetyltransferase 5 (KAT5) in cardiomyocyte pyroptosis during MIRI. Oxygen-glucose deprivation/reoxygenation and left anterior descending coronary artery ligation were used to establish MIRI models. Here we show, KAT5 and STIP1 homology and U-box-containing protein 1 (STUB1) were downregulated, while large tumor suppressor kinase 2 (LATS2) was upregulated in MIRI models. KAT5/STUB1 overexpression or LATS2 silencing repressed cardiomyocyte pyroptosis. Mechanistically, KAT5 promoted STUB1 transcription via acetylation modulation, and subsequently caused ubiquitination and degradation of LATS2, which activated YAP/ß-catenin pathway. Notably, the inhibitory effect of STUB1 overexpression on cardiomyocyte pyroptosis was abolished by LATS2 overexpression or KAT5 depletion. Our findings suggest that KAT5 overexpression inhibits NLRP3-mediated cardiomyocyte pyroptosis to relieve MIRI through modulation of STUB1/LATS2/YAP/ß-catenin axis, providing a potential therapeutic target for MIRI.


Assuntos
Traumatismo por Reperfusão Miocárdica , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Piroptose , Ubiquitinação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Lisina Acetiltransferase 5/metabolismo
5.
J Cancer ; 15(6): 1750-1761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370387

RESUMO

Despite advances in therapeutic strategies for colorectal cancer (CRC), CRC has a high disease incidence with significant morbidity and mortality worldwide. Notably, immunotherapy has shown limited efficacy in treating metastatic CRC, underscoring the need for alternative immunotherapeutic targets for the management of metastatic colorectal cancer (mCRC). In the present study, we evaluated the levels of the immune checkpoint proteins PD-L1, PD-L2 and B7-H3 in a large cohort retrospective study. We found that tumor B7-H3 (52.7%) was highly expressed in primary tumors compared to that in PD-L1 (33.6%) or PD-L2 (34.0%). Elevated B7-H3 expression was associated with advanced stage and the risk of distant metastasis and correlated with poor disease-free survival (DFS), suggesting that tumor B7-H3 was an independent prognostic factor associated with worse DFS in colon adenocarcinoma patients (COAD), especially high-risk COAD patients who received adjuvant chemotherapy. Furthermore, we found that B7-H3 significantly promoted cell proliferation and tumor growth in CRC. B7-H3 may stabilize EGFR to activate its downstream pathway for cancer cell proliferation and resistance to oxaliplatin (OXP). Dual targeting of B7-H3 and EGFR markedly rescued the susceptibility to chemotherapy in colorectal cancer cells in vitro and in vivo. Overall, these results showed that B7-H3 exhibited a high prevalence in COAD patients and was significantly associated with worse prognosis in COAD patients. Dual targeting of B7-H3 and EGFR signaling might be a potential therapeutic strategy for high-risk COAD patients.

6.
Radiat Prot Dosimetry ; 199(15-16): 1947-1952, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819339

RESUMO

This study comprehensively compared two approaches for analyzing the shielding design of the proton therapy facility at China Medical University Hospital. The first approach essentially involved two approximate models: one for estimating the transmitted radiation through thick shields, and one for estimating radiation streaming at locations near a maze entrance. The second approach relied on Monte Carlo simulations for predicting the radiation field in a complex environment. A total of 22 beam loss scenarios were considered, and dose rates at 32 locations around the facility were estimated using the two approaches. The comparison results demonstrated that the simplified approach proposed in this study can yield fairly accurate or conservative estimates for quickly performing shielding design or dose assessment in a real-world proton therapy facility.


Assuntos
Terapia com Prótons , Proteção Radiológica , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Proteção Radiológica/métodos , Hospitais , Doses de Radiação
8.
Int Immunopharmacol ; 123: 110795, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597406

RESUMO

Atherosclerosis (AS) is the most common cardiovascular disease and has limited therapeutic options. IQ motif-containing GTPase-activating protein 1 (IQGAP1) is an important scaffolding protein regulating mitochondrial function influencing endothelial cell activity. Evidence suggests that mitochondrial damage can lead to leakage of mtDNA into the cytoplasm to activate the DNA sensor cGAS-STING to mediate pyroptosis. However, whether IQGAP1 induces NLRP3-mediated endothelial cell pyroptosis by regulating mitochondrial function and activating the DNA sensor cGAS-STING, and its underlying mechanisms remain unclear. In vivo, ApoE-/- C57BL/J and Ldlr-/- C57BL/J mice were pre-injected with adeno-associated virus (AAV) by the tail vein to specifically silence IQGAP1 expression and were fed a high-fat diet (HFD) for 12 weeks. IQGAP1 knockdown reduced mtDNA release and decreased the expression of DNA receptors and pyroptosis-related molecules as determined by immunohistochemistry and immunofluorescence. In vitro, palmitic acid (0.3 mmol/L) was incubated with human umbilical vein endothelial cells (HUVECs) for 24 h. Overexpression of IQGAP1 in HUVECs, flow cytometry, and mitochondrial superoxide staining revealed increased levels of ROS. Moreover, the mitochondrial tracker with dsDNA co-localization showed the release of mtDNA into the cytoplasm increased, which activated the DNA receptor cGAS-STING. Protein blotting and TUNEL staining revealed that IQGAP1 promoted NLRP3-mediated pyroptosis. Furthermore, cGAS or STING small-molecule inhibitors RU.521 or C-176 reverse IQGAP1-promoted HUVECs from undergoing NLRP3-mediated pyroptosis. These results suggest that IQGAP1 promotes oxidative stress and mtDNA release, activates the DNA sensor cGAS-STING, and leads to NLRP3-mediated pyroptosis. The present study provides new insights into the mechanisms underlying AS and identifies new pharmacological targets for treatment.


Assuntos
Aterosclerose , DNA Mitocondrial , Camundongos , Humanos , Animais , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose , Mitocôndrias , Cromogranina A , Células Endoteliais da Veia Umbilical Humana , Nucleotidiltransferases/genética
9.
Environ Toxicol ; 38(10): 2287-2297, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37318315

RESUMO

Metastasis is commonly occurred in gastric cancer, and it is caused and responsible for one of the major cancer-related mortality in gastric cancer patients. Allyl isothiocyanate (AITC), a natural product, exhibits anticancer activities in human many cancer cells, including gastric cancer. However, no available report shows AITC inhibits gastric cancer cell metastasis. Herein, we evaluated the impact of AITC on cell migration and invasion of human gastric cancer AGS cells in vitro. AITC at 5-20 µM did not induce significant cell morphological damages observed by contrast-phase microscopy but decreased cell viability assayed by flow cytometry. After AGS cells were further examined by atomic force microscopy (AFM), which indicated AITC affected cell membrane and morphology in AGS cells. AITC significantly suppressed cell motility examined by scratch wound healing assay. The results of the gelatin zymography assay revealed that AITC significantly suppressed the MMP-2 and MMP-9 activities. In addition, AITC suppressed cell migration and invasion were performed by transwell chamber assays at 24 h in AGS cells. Furthermore, AITC inhibited cell migration and invasion by affecting PI3K/AKT and MAPK signaling pathways in AGS cells. The decreased expressions of p-AKTThr308 , GRB2, and Vimentin in AGS cells also were confirmed by confocal laser microscopy. Our findings suggest that AITC may be an anti-metastasis candidate for human gastric cancer treatment.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Gástricas/metabolismo , Transdução de Sinais , Movimento Celular , Linhagem Celular Tumoral , Invasividade Neoplásica , Proliferação de Células
10.
FASEB J ; 37(6): e22964, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199660

RESUMO

Cardiac ischemia/reperfusion (I/R) injury is a complicated pathological event, which has close association with pyroptosis. This study uncovered the regulatory mechanisms of fat mass and obesity-associated protein (FTO) in NLRP3-mediated pyroptosis during cardiac I/R injury. H9c2 cells were stimulated with oxygen-glucose deprivation/reoxygenation (OGD/R). Cell viability and pyroptosis were detected by CCK-8 and flow cytometry. Western blotting or RT-qPCR was performed to analyze target molecule expression. NLRP3 and Caspase-1 expression was observed by immunofluorescence staining. IL-18 and IL-1ß production was detected by ELISA. The total m6A and m6A level of CBL was determined by dot blot assay and methylated RNA immunoprecipitation-qPCR, respectively. The interaction between IGF2BP3 and CBL mRNA was confirmed by RNA pull-down and RIP assays. The protein interaction between CBL and ß-catenin and ß-catenin ubiquitination were evaluated by Co-IP. Myocardial I/R model was established in rats. We determined infarct size by TTC staining and pathological changes by H&E staining. LDH, CK-MB, LVFS, and LVEF were also assessed. FTO and ß-catenin were down-regulated, while CBL was up-regulated by OGD/R stimulation. FTO/ß-catenin overexpression or CBL silencing restrained OGD/R-induced NLRP3 inflammasome-mediated pyroptosis. CBL repressed ß-catenin expression via ubiquitination and degradation. FTO reduced the mRNA stability of CBL by inhibiting m6A modification. CBL-mediated ubiquitination and degradation of ß-catenin were involved in FTO-induced pyroptosis inhibition during myocardial I/R injury. FTO inhibits NLRP3-mediated pyroptosis to attenuate myocardial I/R injury via repressing CBL-induced ubiquitination degradation of ß-catenin.


Assuntos
Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Animais , Ratos , beta Catenina , Inflamassomos/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Traumatismo por Reperfusão/metabolismo , RNA , Proteínas Proto-Oncogênicas c-cbl
11.
Cancer Immunol Immunother ; 72(7): 2283-2297, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36881132

RESUMO

The CD39-CD73-adenosinergic pathway converts adenosine triphosphate (ATP) to adenosine for inhibiting anti-tumor immune responses. Therefore, targeting CD73 to reinvigorate anti-tumor immunity is considered the novel cancer immunotherapy to eradicate tumor cells. To fully understand the critical role of CD39/CD73 in colon adenocarcinoma (COAD), this study aims to comprehensive investigate the prognostic significance of CD39 and CD73 in stage I-IV COAD. Our data demonstrated that CD73 staining strongly marked malignant epithelial cells and CD39 was highly expressed in stromal cells. Attractively, tumor CD73 expression was significantly associated with tumor stage and the risk of distant metastasis, which suggested CD73 was as an independent factor for colon adenocarcinoma patients in univariate COX analysis [HR = 1.465, 95%CI = 1.084-1.978, p = 0.013]; however, high stromal CD39 in COAD patients was more likely to have favorable survival outcome [HR = 1.458, p = 1.103-1.927, p = 0.008]. Notably, high CD73 expression in COAD patients showed poor response to adjuvant chemotherapy and high risk of distant metastasis. High CD73 expression was inversely associated with less infiltration of CD45+ and CD8+ immune cells. However, administration with anti-CD73 antibodies significantly increased the response to oxaliplatin (OXP). Blockade of CD73 signaling synergistically enhanced OXP-induced ATP release, which is a marker of immunogenic cell death (ICD), promotes dendritic cell maturation and immune cell infiltration. Moreover, the risk of colorectal cancer lung metastasis was also decreased. Taken together, the present study revealed tumor CD73 expression inhibited the recruitment of immune cells and correlated with a poor prognosis in COAD patients, especially patients received adjuvant chemotherapy. Targeting CD73 to markedly increased the therapeutic response to chemotherapy and inhibited lung metastasis. Therefore, tumor CD73 may be an independent prognostic factor as well as the potential of therapeutic target for immunotherapy to benefit colon adenocarcinoma patients.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Neoplasias Pulmonares , Humanos , Adenocarcinoma/patologia , Neoplasias do Colo/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Oxaliplatina/uso terapêutico , Células Dendríticas/metabolismo
12.
Radiother Oncol ; 181: 109528, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773828

RESUMO

BACKGROUND AND PURPOSE: Hippocampal avoidance whole brain radiotherapy (HA-WBRT) is effective for controlling disease and preserving neuro-cognitive function for brain metastases. However, contouring and planning of HA-WBRT is complex and time-consuming. We designed and evaluated a pipeline using deep learning tools for a fully automated treatment planning workflow to generate HA-WBRT radiotherapy plans. MATERIALS AND METHODS: We retrospectively collected 50 adult patients who received HA-WBRT. Using RTOG- 0933 clinical trial protocol guidelines, all organs-at-risk (OARs) and the clinical target volume (CTV) were contoured by experienced radiation oncologists. A deep-learning segmentation model was designed and trained. Next, we developed a volumetric-modulated arc therapy (VMAT) auto-planning algorithm for 30 Gy in 10 fractions. Automated segmentations were evaluated using the Dice similarity coefficient (DSC) and 95th-percentile Hausdorff distance (95 % HD). Auto-plans were evaluated by the percentage of PTV volume that receives 30 Gy (V30Gy), conformity index (CI), and homogeneity index (HI) of planning target volume (PTV) and the minimum dose (D100%) and maximum dose (Dmax) for the hippocampus, Dmax for the lens, eyes, optic nerve, brain stem, and chiasm. RESULTS: We developed a deep-learning segmentation model and an auto-planning script. For the 10 cases in the independent test set, the overall average DSC and 95 % HD of contours were greater than 0.8 and less than 7 mm, respectively. All auto-plans met the RTOG- 0933 criteria. The HA-WBRT plan automatically created time was about 10 min. CONCLUSIONS: An artificial intelligence (AI)-assisted pipeline using deep learning tools can rapidly and accurately generate clinically acceptable HA-WBRT plans with minimal manual intervention and increase efficiency of this treatment for brain metastases.


Assuntos
Neoplasias Encefálicas , Radioterapia de Intensidade Modulada , Adulto , Humanos , Inteligência Artificial , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Hipocampo , Tratamentos com Preservação do Órgão , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
13.
J Neurol Surg A Cent Eur Neurosurg ; 84(6): 513-520, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36495242

RESUMO

BACKGROUND: We investigate the pain relief and safety of microwave ablation (MWA) combined with percutaneous vertebroplasty (PVP) in the treatment of metastatic vertebral tumors. METHODS: This prospective pilot study enrolled patients with metastatic vertebral tumors treated between January 2018 and October 2019. The participants were randomized to the PVP and MWA + PVP groups. Clinical parameters, pain visual analog scale (VAS), analgesic use scores (AUS), and quality-of-life score (QLS) were compared between groups. RESULTS: Sixty-seven participants were enrolled (PVP: n = 35; MWA + PVP: n = 32). There were no differences in bone cement injection volume, extravasation, and X-ray exposure time between the two groups (p > 0.05), but treatment costs were higher for the MWA + PVP group (26,418 ± 194 vs. 15,606 ± 148 yuan; p < 0.05). There were no significant improvements in VAS from baseline to 24 hours, 72 hours, 7 days, 1 month, and 3 months in the two groups (p > 0.05); at 6 and 12 months after the operation, the improvement from baseline was significant in the two groups (p < 0.05). The VAS was lower at 6 months (2.7 ± 0.7 vs. 3.2 ± 0.7) and 12 months (3.5 ± 0.8 vs. 4.0 ± 0.7) in the MWA + PVP group (both p < 0.01 vs. PVP). The AUS and QLS were improved with PVP at 6 and 12 months (p < 0.05) and with MWA + PVP at 12 months (p < 0.05). The AUS was lower at 6 and 12 months in the MWA + PVP group (p < 0.05 vs. PVP). CONCLUSION: MWA combined with PVP might be a safe and effective palliative treatment for pain from metastatic vertebral tumors.


Assuntos
Fraturas por Compressão , Neoplasias , Fraturas da Coluna Vertebral , Vertebroplastia , Humanos , Fraturas por Compressão/etiologia , Fraturas por Compressão/cirurgia , Micro-Ondas/efeitos adversos , Neoplasias/etiologia , Dor/etiologia , Projetos Piloto , Estudos Prospectivos , Estudos Retrospectivos , Fraturas da Coluna Vertebral/cirurgia , Resultado do Tratamento , Vertebroplastia/efeitos adversos
14.
Cancer Immunol Res ; 11(1): 123-136, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36315960

RESUMO

The potency of tumor-specific antigen (TSA) vaccines, such as neoantigen (neoAg)-based cancer vaccines, can be compromised by host immune checkpoint inhibitory mechanisms, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1), that attenuate neoAg presentation on dendritic cells (DC) and hinder T cell-mediated cytotoxicity. To overcome PD-1/PD-L1 inhibition in DCs, we developed a novel adeno-associated virus (meAAV) neoAg vaccine, modified with TLR9 inhibitory fragments, PD-1 trap, and PD-L1 miRNA, which extend the persistence of meAAV and activate neoAg-specific T-cell responses in immune-competent colorectal and breast cancer murine models. Moreover, we found that in combination with radiotherapy, the meAAV-based neoAg cancer vaccine not only elicited higher antigen presentation ability, but also maintained neoAg-specific cytotoxic T lymphocyte (CTL) responses. These functional PD-1 traps and PD-L1 miRNAs overcome host PD-1/PD-L1 inhibitory mechanisms and boost the therapeutic efficacy of radiotherapy. More importantly, combined radiotherapy and meAAV neoAg cancer vaccines significantly enhanced neoAg-specific CTL responses, increased CTL infiltration in tumor microenvironment, and decreased tumor-associated immunosuppression. This process led to the complete elimination of colorectal cancer and delayed tumor growth of breast cancer in tumor-bearing mice. Taken together, our results demonstrated a novel strategy that combines neoAg cancer vaccine and radiotherapy to increase the therapeutic efficacy against colorectal and breast cancers.


Assuntos
Vacinas Anticâncer , Neoplasias Colorretais , MicroRNAs , Camundongos , Animais , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Linfócitos T Citotóxicos , MicroRNAs/genética , Neoplasias Colorretais/terapia , Microambiente Tumoral
15.
Front Pharmacol ; 13: 957660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210838

RESUMO

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of systemic autoimmune diseases, which is typified by inflammatory necrosis predominantly affecting the small vessels and often accompanied by positive ANCA. Clinically, AAV primarily includes microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and eosinophilic granulomatosis with polyangiitis (EGPA). It has been found that in AAV pathogenesis, both innate and adaptive immunity are related to neutrophil function mutually. Many proteins, such as myeloperoxidase (MPO) and proteinase 3 (PR3), in neutrophil cytoplasm lead to the production of proteins such as MPO-ANCA and PR3-ANCA by activating adaptive immunity. In addition, through the process of neutrophil extracellular trap (NET) formation, activation of an alternative complement pathway and the respiratory burst can stimulate the neutrophils close to vascular endothelial cells and will participate the vessel inflammation. This review aims to reveal the potential mechanisms regulating the association between the neutrophils and various types of AAVs and to emphasize the results of recent findings on these interactions. Moreover, multiple underlying signaling pathways involved in the regulation of neutrophils during AAV processes have also been discussed. The ultimate goal of this review is to identify novel biomarkers and therapeutic targets for AAV management in the future.

16.
Oncol Rep ; 48(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222295

RESUMO

The metastasis of human osteosarcoma (OS) shows a difficult­to­treat clinical scenario and results in decreased quality of life and diminished survival rates. Finding or developing novel treatments to improve the life quality of patients is urgent. Bisdemethoxycurcumin (BDMC), a natural product, was obtained from the rhizome of turmeric (Curcuma longa) and exerts antitumor activities in numerous human cancer cell lines. At present, there is no study showing BDMC effects on OS cell migration and invasion. In the present study, the effects of BDMC on cell migration and invasion of OS U­2 OS cells were investigated in vitro. Cell viability and proliferation were measured by flow cytometric and MTT assays, respectively. Cell motility, MMP­2 and ­9 activity, and cell migration and invasion were assayed by scratch wound healing, gelatin zymography, and Transwell chamber assays, respectively. The protein expression levels were measured by western blotting. BDMC at 20 and 40 µM significantly reduced total cell viability, and BDMC at 5 and 10 µM significantly inhibited cell motility in U­2 OS cells. BDMC significantly suppressed the activities of MMP­2 and MMP­9 in U­2 OS cells. BDMC suppressed cell invasion and migration after 24 h treatment in U­2 OS cells, and these effects were in a dose­dependently manner. Results from western blotting indicated that BDMC significantly decreased the protein expression levels of PI3K/Akt/NF­κB, PI3K/Akt/GSK3ß, and MAPK pathway in U­2 OS cells. Furthermore, BDMC inhibited uPA, MMP­2, MMP­9, MMP­13, N­cadherin, VE­cadherin, and vimentin but increased E­cadherin in U­2 OS cells. Based on these observations, it was suggested that BDMC may be a potential candidate against migration and invasion of human OS cells in the future.


Assuntos
Produtos Biológicos , Neoplasias Ósseas , Osteossarcoma , Produtos Biológicos/farmacologia , Neoplasias Ósseas/patologia , Caderinas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Diarileptanoides , Gelatina/farmacologia , Gelatina/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , Osteossarcoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Qualidade de Vida , Transdução de Sinais , Vimentina/metabolismo
17.
J Clin Lab Anal ; 36(10): e24658, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35989522

RESUMO

BACKGROUND: All chronic liver diseases could lead to liver fibrosis. Accurate diagnosis and stage of fibrosis were important for the medical determination, management, and therapy. Liver biopsy was considered to be the gold criteria of fibrosis diagnosis. However, liver biopsy was an invasive method with some drawbacks. Non-invasive tests for liver fibrosis included radiologic method and serum-based test. Radiologic examination was influenced by obesity, cost, and availability. Serum-based test was widely used in the screening and diagnostic of liver fibrosis. However, the accuracy was still needed to be improved. METHODS: Recent studies showed serum non-coding RNAs: microRNA, long non-coding RNA(lncRNA), and circular RNA(circRNA), which have the potentiality to be non-invasive markers for liver fibrosis. The recent progress was summarized in this review. RESULTS: These studies showed serum non-coding RNAs exerted a good diagnostic performance for liver fibrosis. A panel that included several non-coding RNAs could increase the accuracy of single marker. CONCLUSIONS: Serum microRNAs, lncRNAs, and circRNAs could be potential non-invasive markers for diagnosis and stage of liver fibrosis. More high-quality clinical study is needed for further research.


Assuntos
MicroRNAs , RNA Longo não Codificante , Biomarcadores , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/genética , MicroRNAs/genética , RNA Circular , RNA Longo não Codificante/genética
18.
Cell Death Dis ; 13(7): 610, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835756

RESUMO

Radiotherapy (RT) mainly elicits antitumor immunity via the cGAS/STING axis for type I interferon (IFN) production. However, dysregulation of cGAS/STING constrains radiotherapy-induced antitumor immunity and type I IFN-dependent cell death and is associated with shorter survival of patients with colorectal cancer (CRC). Due to their tumor tropism, mesenchymal stem cells (MSCs) have shown the potential to deliver therapeutic genes for cancer therapy. Here, we showed that MSCs enhance the sensitivity to RT by inducing TRAIL-dependent cell death and remodel the tumor microenvironment by recruiting CD8+ immune cells to upregulate PD-L1 in the tumor. By engineering MSCs to express CRC-specific soluble TRAIL via adenovirus-associated virus 2 (AAV2), we found that the therapeutic activity of MSC-sTRAIL was superior to that of MSCs alone when combined with RT. Combined treatment with MSC-sTRAIL and RT significantly reduced cell viability and increased apoptosis by inducing TRAIL-dependent cell death in STING-deficient colorectal cancer cells. MSC-sTRAIL directly triggered TRAIL-dependent cell death to overcome the deficiency of the cGAS/STING axis. Moreover, these combination treatments of MSC-sTRAIL and RT significantly remodeled the tumor microenvironment, which was more suitable for anti-PD-L1 immunotherapy. Taken together, this therapeutic strategy represents a novel targeted treatment option for patients with colorectal cancer, especially cGAS/STING-deficient patients.


Assuntos
Neoplasias Colorretais , Células-Tronco Mesenquimais , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , Humanos , Inibidores de Checkpoint Imunológico , Células-Tronco Mesenquimais/metabolismo , Nucleotidiltransferases/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Microambiente Tumoral
19.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008959

RESUMO

Bisdemethoxycurcumin (BDMC) has biological activities, including anticancer effects in vitro; however, its anticancer effects in human glioblastoma (GBM) cells have not been examined yet. This study aimed to evaluate the tumor inhibitory effect and molecular mechanism of BDMC on human GBM 8401/luc2 cells in vitro and in vivo. In vitro studies have shown that BDMC significantly reduced cell viability and induced cell apoptosis in GBM 8401/luc2 cells. Furthermore, BDMC induced apoptosis via inhibited Bcl-2 (anti-apoptotic protein) and increased Bax (pro-apoptotic proteins) and cytochrome c release in GBM 8401/luc2 cells in vitro. Then, twelve BALB/c-nude mice were xenografted with human glioblastoma GBM 8401/luc2 cancer cells subcutaneously, and the xenograft nude mice were treated without and with BDMC (30 and 60 mg/kg of BDMC treatment) every 3 days. GBM 8401/luc2 cell xenografts experiment showed that the growth of the tumors was significantly suppressed by BDMC administration at both doses based on the reduction of tumor size and weights. BDMC did not change the body weight and the H&E histopathology analysis of liver samples, indicating that BDMC did not induce systemic toxicity. Meanwhile, treatment with BDMC up-regulated the expressions of BAX and cleaved caspase-3, while it down-regulated the protein expressions of Bcl-2 and XIAP in the tumor tissues compared with the control group. This study has demonstrated that BDMC presents potent anticancer activity on the human glioblastoma GBM 8401/luc2 cell xenograft model by inducing apoptosis and inhibiting tumor cell proliferation and shows the potential for further development to the anti-GBM cancer drug.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Diarileptanoides/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ciências Biocomportamentais , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/etiologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Rep ; 11(1): 22525, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795363

RESUMO

Engineering simulation accelerates the development of reliable and repeatable design processes in various domains. However, the computing resource consumption is dramatically raised in the whole development processes. Making the most of these simulation data becomes more and more important in modern industrial product design. In the present study, we proposed a workflow comprised of a series of machine learning algorithms (mainly deep neuron networks) to be an alternative to the numerical simulation. We have applied the workflow to the field of dental implant design process. The process is based on a complex, time-dependent, multi-physical biomechanical theory, known as mechano-regulatory method. It has been used to evaluate the performance of dental implants and to assess the tissue recovery after the oral surgery procedures. We provided a deep learning network (DLN) with calibrated simulation data that came from different simulation conditions with experimental verification. The DLN achieves nearly exact result of simulated bone healing history around implants. The correlation of the predicted essential physical properties of surrounding bones (e.g. strain and fluid velocity) and performance indexes of implants (e.g. bone area and bone-implant contact) were greater than 0.980 and 0.947, respectively. The testing AUC values for the classification of each tissue phenotype were ranging from 0.90 to 0.99. The DLN reduced hours of simulation time to seconds. Moreover, our DLN is explainable via Deep Taylor decomposition, suggesting that the transverse fluid velocity, upper and lower parts of dental implants are the keys that influence bone healing and the distribution of tissue phenotypes the most. Many examples of commercial dental implants with designs which follow these design strategies can be found. This work demonstrates that DLN with proper network design is capable to replace complex, time-dependent, multi-physical models/theories, as well as to reveal the underlying features without prior professional knowledge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA