Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glycoconj J ; 41(2): 93-118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630380

RESUMO

Galectin-3 has a variety of important pathophysiological significance in the human body. Much evidence shows that the abnormal expression of galectin-3 is related to the formation and development of many diseases. Pectin is mostly obtained from processed citrus fruits and apples and is a known natural inhibitor of galactin-3. A large number of peels produced each year are discarded, and it is necessary to recycle some of the economically valuable active compounds in these by-products to reduce resource waste and environmental pollution. By binding with galectin-3, pectin can directly reduce the expression level of galectin-3 on the one hand, and regulate the expression level of cytokines by regulating certain signaling pathways on the other hand, to achieve the effect of treating diseases. This paper begins by presenting an overview of the basic structure of pectin, subsequently followed by a description of the structure of galectin-3 and its detrimental impact on human health when expressed abnormally. The health effects of pectin as a galectin-3 inhibitor were then summarized from the perspectives of anticancer, anti-inflammatory, ameliorating fibrotic diseases, and anti-diabetes. Finally, the challenges and prospects of future research on pectin are presented, which provide important references for expanding the application of pectin in the pharmaceutical industry or developing functional dietary supplements.


Assuntos
Galectina 3 , Pectinas , Animais , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Proteínas Sanguíneas , Galectina 3/metabolismo , Galectina 3/antagonistas & inibidores , Galectinas/metabolismo , Galectinas/antagonistas & inibidores , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Pectinas/farmacologia , Pectinas/química
2.
Int J Biol Macromol ; 266(Pt 1): 131164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547940

RESUMO

The biological potency of pectin is intricately intertwined with its intricate molecular architecture. The fine structure of pectin is influenced by the extraction method, while the specific impact of these methods on the fine structure and the affected attributes thereof remains enigmatic. This study delves into the profound analysis of eight distinct extraction methods influence on the structure and biological activity of citrus peel pectin. The findings demonstrate that citric acid ultrasound-assisted microwave extraction yields pectin (PectinCA-US/MV) with higher viscosity and a dense, rigid chain. Pectin extracted with acetic acid ultrasound (PectinAA-US) and citric acid ultrasound (PectinCA-US) exhibits elevated galacturonic acid (GalA) levels and reduced D-galactose (Gal) content, enhancing antioxidant activity. Eight pectin-chitosan (CS) hydrogels, especially PectinCA-US/MV-CS, demonstrate commendable thermal stability, rheological properties, self-healing capability, and swelling behavior. This study characterizes citrus peel pectin properties from different extraction methods, laying a foundation for its application in food, pharmaceuticals, and industry.


Assuntos
Antioxidantes , Citrus , Ácidos Hexurônicos , Micro-Ondas , Pectinas , Pectinas/química , Pectinas/isolamento & purificação , Pectinas/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Citrus/química , Viscosidade , Hidrogéis/química , Ácido Cítrico/química , Quitosana/química , Reologia , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA