Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(11): 1637-1649, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945831

RESUMO

Epigenetic dysregulation is a prominent feature in cancer, as exemplified by frequent mutations in chromatin regulators, including the MLL/KMT2 family of histone methyltransferases. Although MLL1/KMT2A activity on H3K4 methylation is well documented, their non-canonical activities remain mostly unexplored. Here we show that MLL1/KMT2A methylates Borealin K143 in the intrinsically disordered region essential for liquid-liquid phase separation of the chromosome passenger complex (CPC). The co-crystal structure highlights the distinct binding mode of the MLL1 SET domain with Borealin K143. Inhibiting MLL1 activity or mutating Borealin K143 to arginine perturbs CPC phase separation, reduces Aurora kinase B activity, and impairs the resolution of erroneous kinetochore-microtubule attachments and sister-chromatid cohesion. They significantly increase chromosome instability and aneuploidy in a subset of hepatocellular carcinoma, resulting in growth inhibition. These results demonstrate a non-redundant function of MLL1 in regulating inner centromere liquid condensates and genome stability via a non-canonical enzymatic activity.


Assuntos
Proteínas Cromossômicas não Histona , Mitose , Humanos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Centrômero/genética , Centrômero/metabolismo , Proteínas de Ciclo Celular/genética , Instabilidade Genômica , Aurora Quinase B/genética , Aurora Quinase B/metabolismo
2.
J Am Chem Soc ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916782

RESUMO

Cobalt-sulfur (Co-S) coordination is labile to both oxidation and reduction chemistry and is rarely seen in nature. Cobalamin (or vitamin B12) is an essential cobalt-containing organometallic cofactor in mammals and is escorted via an intricate network of chaperones to a single cytoplasmic target, methionine synthase. In this study, we report that the human cobalamin trafficking protein, MMADHC, exploits the chemical lability of Co-S coordination for cofactor off-loading onto methionine synthase. Cys-261 on MMADHC serves as the ß-axial ligand to cobalamin. Complex formation between MMADHC and methionine synthase is signaled by loss of the lower axial nitrogen ligand, leading to five-coordinate thiolato-cobalamin. Nucleophilic displacement by the vicinal thiolate, Cys-262, completes cofactor transfer to methionine synthase and release of a cysteine disulfide-containing MMADHC. The physiological relevance of this mechanism is supported by clinical variants of MMADHC, which impair cofactor binding and off-loading, explaining the molecular basis of the associated homocystinuria.

3.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546824

RESUMO

Cobalt-sulfur (Co-S) coordination is labile to both oxidation and reduction chemistry and is rarely seen in Nature. Cobalamin (or vitamin B 12 ) is an essential cobalt-containing organometallic cofactor in mammals, and is escorted via an intricate network of chaperones to a single cytoplasmic target, methionine synthase. In this study, we report that the human cobalamin trafficking protein, MMADHC, exploits the chemical lability of Co-S coordination, for cofactor off-loading onto methionine synthase. Cys-261 on MMADHC serves as the ß-axial ligand to cobalamin. Complex formation between MMADHC and methionine synthase is signaled by loss of the lower axial nitrogen ligand, leading to five-coordinate thiolato-cobalamin. Nucleophilic displacement by the vicinal thiolate, Cys-262, completes cofactor transfer to methionine synthase and release of a cysteine disulfide-containing MMADHC. The physiological relevance of this mechanism is supported by clinical variants of MMADHC, which impair cofactor binding and off-loading, explaining the molecular basis of the associated homocystinuria.

4.
Cell Death Differ ; 28(4): 1251-1269, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33116296

RESUMO

Inactivation of tumor suppressor Runt-related transcription factor 3 (RUNX3) plays an important role during early tumorigenesis. However, posttranslational modifications (PTM)-based mechanism for the inactivation of RUNX3 under hypoxia is still not fully understood. Here, we demonstrate a mechanism that G9a, lysine-specific methyltransferase (KMT), modulates RUNX3 through PTM under hypoxia. Hypoxia significantly increased G9a protein level and G9a interacted with RUNX3 Runt domain, which led to increased methylation of RUNX3 at K129 and K171. This methylation inactivated transactivation activity of RUNX3 by reducing interactions with CBFß and p300 cofactors, as well as reducing acetylation of RUNX3 by p300, which is involved in nucleocytoplasmic transport by importin-α1. G9a-mediated methylation of RUNX3 under hypoxia promotes cancer cell proliferation by increasing cell cycle or cell division, while suppresses immune response and apoptosis, thereby promoting tumor growth during early tumorigenesis. Our results demonstrate the molecular mechanism of RUNX3 inactivation by G9a-mediated methylation for cell proliferation and antiapoptosis under hypoxia, which can be a therapeutic or preventive target to control tumor growth during early tumorigenesis.


Assuntos
Carcinogênese/genética , Hipóxia Celular/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Metilação de DNA/genética , Acetilação , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Commun ; 10(1): 5540, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804488

RESUMO

Mixed lineage leukemia (MLL) family histone methyltransferases are enzymes that deposit histone H3 Lys4 (K4) mono-/di-/tri-methylation and regulate gene expression in mammals. Despite extensive structural and biochemical studies, the molecular mechanisms whereby the MLL complexes recognize histone H3K4 within nucleosome core particles (NCPs) remain unclear. Here we report the single-particle cryo-electron microscopy (cryo-EM) structure of the NCP-bound human MLL1 core complex. We show that the MLL1 core complex anchors to the NCP via the conserved RbBP5 and ASH2L, which interact extensively with nucleosomal DNA and the surface close to the N-terminal tail of histone H4. Concurrent interactions of RbBP5 and ASH2L with the NCP uniquely align the catalytic MLL1SET domain at the nucleosome dyad, thereby facilitating symmetrical access to both H3K4 substrates within the NCP. Our study sheds light on how the MLL1 complex engages chromatin and how chromatin binding promotes MLL1 tri-methylation activity.


Assuntos
Microscopia Crioeletrônica/métodos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Nucleossomos/metabolismo , Animais , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/ultraestrutura , Humanos , Lisina/metabolismo , Metilação , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenopus laevis
6.
Nat Commun ; 6: 10025, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26612684

RESUMO

Sestrins are stress-inducible metabolic regulators with two seemingly unrelated but physiologically important functions: reduction of reactive oxygen species (ROS) and inhibition of the mechanistic target of rapamycin complex 1 (mTORC1). How Sestrins fulfil this dual role has remained elusive so far. Here we report the crystal structure of human Sestrin2 (hSesn2), and show that hSesn2 is twofold pseudo-symmetric with two globular subdomains, which are structurally similar but functionally distinct from each other. While the N-terminal domain (Sesn-A) reduces alkylhydroperoxide radicals through its helix-turn-helix oxidoreductase motif, the C-terminal domain (Sesn-C) modified this motif to accommodate physical interaction with GATOR2 and subsequent inhibition of mTORC1. These findings clarify the molecular mechanism of how Sestrins can attenuate degenerative processes such as aging and diabetes by acting as a simultaneous inhibitor of ROS accumulation and mTORC1 activation.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Cromatografia em Gel , Cristalização , Escherichia coli , Células HEK293 , Sequências Hélice-Volta-Hélice , Humanos , Immunoblotting , Imunoprecipitação , Técnicas In Vitro , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Nucleares/química , Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais
7.
Food Chem ; 128(2): 358-63, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25212142

RESUMO

The effects of sensitisers and pH on the oil oxidation of acidic O/W emulsions were studied under light by measuring hydroperoxide content and headspace oxygen consumption in the emulsions. The emulsions consisted of canola and tuna oil (2:1w/w, 32%), diluted acetic acid (64%), egg yolk powder (4%), chlorophyll b or erythrosine (5µM), and/or diazabicyclooctane (DABCO) or sodium azide (0.5M). The emulsion pH values were 2.67, 3.68, and 6.27. Chlorophyll increased oil oxidation in the emulsion under light via singlet oxygen production while erythrosine did not. DABCO significantly decreased photooxidation of the oil containing chlorophyll, suggesting singlet oxygen involvement. However, sodium azide increased photooxidation of the oil containing chlorophyll possibly via azide radical production under acidic conditions. The oil photooxidation was higher in the emulsion containing chlorophyll at pH 6.27 than at pH 2.67 or 3.68, primarily by singlet oxygen and secondarily by free radicals produced from hydroperoxide decomposition.

8.
J Med Food ; 13(2): 406-14, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20132043

RESUMO

The influence of ethanolic extracts of Brassica campestris spp. rapa roots (EBR) on obesity was examined in imprinting control region (ICR) mice fed a high-fat diet (HFD) and in 3T3-L1 adipocytes. The ICR mice used were divided into regular diet, HFD, EBR (50 mg/kg/day EBR administered orally), and orlistat (10 mg/kg/day orlistat administered orally) groups. The molecular mechanism of the anti-obesity effect of EBR was investigated in 3T3-L1 adipocytes as well as in HFD-fed ICR mice. In the obese mouse model, both weight gain and epididymal fat accumulation were highly suppressed by the daily oral administration of 50 mg/kg EBR for 8 weeks, whereas the overall amount of food intake was not affected. EBR treatment induced the expression in white adipocytes of lipolysis-related genes, including beta(3)-adrenergic receptor (beta(3)-AR), hormone-sensitive lipase (HSL), adipose triglyceride lipase, and uncoupling protein 2. Furthermore, the activation of cyclic AMP-dependent protein kinase, HSL, and extracellular signal-regulated kinase was induced in EBR-treated 3T3-L1 cells. The lipolytic effect of EBR involved beta(3)-AR modulation, as inferred from the inhibition by the beta(3)-AR antagonist propranolol. These results suggest that EBR may have potential as a safe and effective anti-obesity agent via the inhibition of adipocyte lipid accumulation and the stimulation of beta(3)-AR-dependent lipolysis.


Assuntos
Adipócitos Brancos/metabolismo , Adrenérgicos/uso terapêutico , Fármacos Antiobesidade/uso terapêutico , Brassica , Lipólise/efeitos dos fármacos , Obesidade/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Adrenérgicos/farmacologia , Animais , Fármacos Antiobesidade/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Ingestão de Energia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Canais Iônicos/metabolismo , Lipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas Mitocondriais/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Raízes de Plantas , Propranolol/farmacologia , Receptores Adrenérgicos/metabolismo , Esterol Esterase/metabolismo , Proteína Desacopladora 2 , Aumento de Peso/efeitos dos fármacos
9.
J Agric Food Chem ; 57(4): 1267-74, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19166336

RESUMO

Antiatherosclerotic effects of ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal (ESJ) were investigated in low-density lipoprotein receptor deficient (LDLR(-/-)) mice. The Western diet-induced high levels of total cholesterol and triglyceride were similar in the ESJ and control groups. However, circulating oxidized LDL was significantly decreased in the ESJ group (p < 0.05). ESJ also markedly decreased aortic expression levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1 beta), and reduced the aortic lesion formation and macrophage accumulation by 36.7% (p < 0.05) and 43% (p < 0.01) in the control group, respectively. Additionally, ESJ inhibited atherogenic properties with cytokine-induced surface expression of cell adhesion molecules, chemokines, and monocyte adhesion to the human umbilical vein endothelial cells (HUVECs), and simultaneously suppressed nuclear factor-kappaB (NF-kappaB) activation. These results suggest that ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal contributes to the antiatherosclerotic and anti-inflammatory activities in LDLR(-/-) mice.


Assuntos
Artemisia/química , Aterosclerose/prevenção & controle , Extratos Vegetais/administração & dosagem , Receptores de LDL/deficiência , Animais , Anti-Inflamatórios/administração & dosagem , Aorta/química , Aorta/patologia , Aterosclerose/patologia , Adesão Celular , Células Cultivadas , Colesterol/sangue , Dieta Aterogênica , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/análise , Interleucina-1beta/análise , Lipoproteínas LDL/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/farmacologia , Veias Umbilicais , Molécula 1 de Adesão de Célula Vascular/análise
10.
Exp Mol Med ; 40(4): 407-17, 2008 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-18779653

RESUMO

We investigated the mechanism of spontaneous cholesterol efflux induced by acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibition, and how an alteration of cholesterol metabolism in macrophages impacts on that in HepG2 cells. Oleic acid anilide (OAA), a known ACAT inhibitor reduced lipid storage substantially by promotion of cholesterol catabolism and repression of cholesteryl ester accumulation without further increase of cytotoxicity in acetylated low-density lipoprotein-loaded THP-1 macrophages. Analysis of expressed mRNA and protein revealed that cholesterol 7alpha-hydroxylase (CYP7A1), oxysterol 7alpha- hydroxylase (CYP7B1), and cholesterol 27-hydroxylase (CYP27) were highly induced by ACAT inhibition. The presence of a functional cytochrome P450 pathway was confirmed by quantification of the biliary cholesterol mass in cell monolayers and extracelluar medium. Notably, massively secreted biliary cholesterol from macrophages suppressed the expression of CYP7 proteins in a farnesoid X receptor (FXR)-dependent manner in HepG2 cells. The findings reported here provide new insight into mechanisms of spontaneous cholesterol efflux, and suggest that ACAT inhibition may stimulate cholesterol-catabolic (cytochrome P450) pathway in lesion-macrophages, in contrast, suppress it in hepatocyte via FXR induced by biliary cholesterol (BC).


Assuntos
Anilidas/farmacologia , Colesterol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hepatócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Ácidos Oleicos/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Esterol O-Aciltransferase/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Bile/metabolismo , Células Cultivadas , Ésteres do Colesterol/metabolismo , Proteínas de Ligação a DNA/agonistas , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Macrófagos/metabolismo , Modelos Biológicos , Receptores Citoplasmáticos e Nucleares/agonistas , Esterol O-Aciltransferase/fisiologia , Fatores de Transcrição/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA