Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Am J Respir Cell Mol Biol ; 69(5): 584-591, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37523713

RESUMO

Prostaglandin E2 imparts diverse physiological effects on multiple airway cells through its actions on four distinct E-type prostanoid (EP) receptor subtypes (EP1-EP4). Gs-coupled EP2 and EP4 receptors are expressed on airway smooth muscle (ASM), yet their capacity to regulate the ASM contractile state remains subject to debate. We used EP2 and EP4 subtype-specific agonists (ONO-259 and ONO-329, respectively) in cell- and tissue-based models of human ASM contraction-magnetic twisting cytometry (MTC), and precision-cut lung slices (PCLSs), respectively-to study the EP2 and EP4 regulation of ASM contraction and signaling under conditions of histamine or methacholine (MCh) stimulation. ONO-329 was superior (<0.05) to ONO-259 in relaxing MCh-contracted PCLSs (log half maximal effective concentration [logEC50]: 4.9 × 10-7 vs. 2.2 × 10-6; maximal bronchodilation ± SE, 35 ± 2% vs. 15 ± 2%). However, ONO-259 and ONO-329 were similarly efficacious in relaxing histamine-contracted PCLSs. Similar differential effects were observed in MTC studies. Signaling analyses revealed only modest differences in ONO-329- and ONO-259-induced phosphorylation of the protein kinase A substrates VASP and HSP20, with concomitant stimulation with MCh or histamine. Conversely, ONO-259 failed to inhibit MCh-induced phosphorylation of the regulatory myosin light chain (pMLC20) and the F-actin/G-actin ratio (F/G-actin ratio) while effectively inhibiting their induction by histamine. ONO-329 was effective in reversing induced pMLC20 and the F/G-actin ratio with both MCh and histamine. Thus, the contractile-agonist-dependent differential effects are not explained by changes in the global levels of phosphorylated protein kinase A substrates but are reflected in the regulation of pMLC20 (cross-bridge cycling) and F/G-actin ratio (actin cytoskeleton integrity, force transmission), implicating a role for compartmentalized signaling involving muscarinic, histamine, and EP receptor subtypes.


Assuntos
Actinas , Receptores de Prostaglandina E Subtipo EP2 , Humanos , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Histamina/farmacologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Dinoprostona , Músculo Liso/metabolismo , Pulmão/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico
2.
Clin Exp Metastasis ; 40(4): 321-338, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37326720

RESUMO

Although metastasis is the leading cause of cancer deaths, it is quite rare at the cellular level. Only a rare subset of cancer cells (~ 1 in 1.5 billion) can complete the entire metastatic cascade: invasion, intravasation, survival in the circulation, extravasation, and colonization (i.e. are metastasis competent). We propose that cells engaging a Polyaneuploid Cancer Cell (PACC) phenotype are metastasis competent. Cells in the PACC state are enlarged, endocycling (i.e. non-dividing) cells with increased genomic content that form in response to stress. Single-cell tracking using time lapse microscopy reveals that PACC state cells have increased motility. Additionally, cells in the PACC state exhibit increased capacity for environment-sensing and directional migration in chemotactic environments, predicting successful invasion. Magnetic Twisting Cytometry and Atomic Force Microscopy reveal that cells in the PACC state display hyper-elastic properties like increased peripheral deformability and maintained peri-nuclear cortical integrity that predict successful intravasation and extravasation. Furthermore, four orthogonal methods reveal that cells in the PACC state have increased expression of vimentin, a hyper-elastic biomolecule known to modulate biomechanical properties and induce mesenchymal-like motility. Taken together, these data indicate that cells in the PACC state have increased metastatic potential and are worthy of further in vivo analysis.


Assuntos
Neoplasias , Linhagem Celular Tumoral
3.
Am J Respir Cell Mol Biol ; 66(1): 96-106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648729

RESUMO

In most living cells, the second-messenger roles for adenosine 3',5'-cyclic monophosphate (cAMP) are short-lived, confined to the intracellular space, and tightly controlled by the binary switch-like actions of Gαs (stimulatory G protein)-activated adenylyl cyclase (cAMP production) and cAMP-specific PDE (cAMP breakdown). Here, by using human airway smooth muscle (HASM) cells in culture as a model, we report that activation of the cell-surface ß2AR (ß2-adrenoceptor), a Gs-coupled GPCR (G protein-coupled receptor), evokes cAMP egress to the extracellular space. Increased extracellular cAMP levels ([cAMP]e) are long-lived in culture and are induced by receptor-dependent and receptor-independent mechanisms in such a way as to define a universal response class of increased intracellular cAMP levels ([cAMP]i). We find that HASM cells express multiple ATP-binding cassette (ABC) membrane transporters, with ABCC1 (ABC subfamily member C 1) being the most highly enriched transcript mapped to MRPs (multidrug resistance-associated proteins). We show that pharmacological inhibition or downregulation of ABCC1 with siRNA markedly reduces ß2AR-evoked cAMP release from HASM cells. Furthermore, inhibition of ABCC1 activity or expression decreases basal tone and increases ß-agonist-induced HASM cellular relaxation. These findings identify a previously unrecognized role for ABCC1 in the homeostatic regulation of [cAMP]i in HASM that may be conserved traits of the Gs-GPCRs (Gs-coupled family of GPCRs). Hence, the general features of this activation mechanism may uncover new disease-modifying targets in the treatment of airflow obstruction in asthma. Surprisingly, we find that serum cAMP levels are elevated in a small cohort of patients with asthma as compared with control subjects, which warrants further investigation.


Assuntos
AMP Cíclico/metabolismo , Pulmão/citologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Relaxamento Muscular/fisiologia , Miócitos de Músculo Liso/fisiologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Asma/sangue , Asma/fisiopatologia , Cromograninas/metabolismo , AMP Cíclico/sangue , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , RNA Interferente Pequeno/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34857633

RESUMO

G protein-coupled receptors display multifunctional signaling, offering the potential for agonist structures to promote conformational selectivity for biased outputs. For ß2-adrenergic receptors (ß2AR), unbiased agonists stabilize conformation(s) that evoke coupling to Gαs (cyclic adenosine monophosphate [cAMP] production/human airway smooth muscle [HASM] cell relaxation) and ß-arrestin engagement, the latter acting to quench Gαs signaling, contributing to receptor desensitization/tachyphylaxis. We screened a 40-million-compound scaffold ranking library, revealing unanticipated agonists with dihydroimidazolyl-butyl-cyclic urea scaffolds. The S-stereoisomer of compound C1 shows no detectable ß-arrestin engagement/signaling by four methods. However, C1-S retained Gαs signaling-a divergence of the outputs favorable for treating asthma. Functional studies with two models confirmed the biasing: ß2AR-mediated cAMP signaling underwent desensitization to the unbiased agonist albuterol but not to C1-S, and desensitization of HASM cell relaxation was observed with albuterol but not with C1-S These HASM results indicate biologically pertinent biasing of C1-S, in the context of the relevant physiologic response, in the human cell type of interest. Thus, C1-S was apparently strongly biased away from ß-arrestin, in contrast to albuterol and C5-S C1-S structural modeling and simulations revealed binding differences compared with unbiased epinephrine at transmembrane (TM) segments 3,5,6,7 and ECL2. C1-S (R2 = cyclohexane) was repositioned in the pocket such that it lost a TM6 interaction and gained a TM7 interaction compared with the analogous unbiased C5-S (R2 = benzene group), which appears to contribute to C1-S biasing away from ß-arrestin. Thus, an agnostic large chemical-space library identified agonists with receptor interactions that resulted in relevant signal splitting of ß2AR actions favorable for treating obstructive lung disease.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 2/química , Animais , Linhagem Celular , Simulação por Computador , Cricetinae , Descoberta de Drogas , Epinefrina/química , Epinefrina/farmacologia , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Músculo Liso/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Sistema Respiratório , Bibliotecas de Moléculas Pequenas
5.
Proc Natl Acad Sci U S A ; 117(45): 28485-28495, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097666

RESUMO

The recent discovery of sensory (tastant and odorant) G protein-coupled receptors on the smooth muscle of human bronchi suggests unappreciated therapeutic targets in the management of obstructive lung diseases. Here we have characterized the effects of a wide range of volatile odorants on the contractile state of airway smooth muscle (ASM) and uncovered a complex mechanism of odorant-evoked signaling properties that regulate excitation-contraction (E-C) coupling in human ASM cells. Initial studies established multiple odorous molecules capable of increasing intracellular calcium ([Ca2+]i) in ASM cells, some of which were (paradoxically) associated with ASM relaxation. Subsequent studies showed a terpenoid molecule (nerol)-stimulated OR2W3 caused increases in [Ca2+]i and relaxation of ASM cells. Of note, OR2W3-evoked [Ca2+]i mobilization and ASM relaxation required Ca2+ flux through the store-operated calcium entry (SOCE) pathway and accompanied plasma membrane depolarization. This chemosensory odorant receptor response was not mediated by adenylyl cyclase (AC)/cyclic nucleotide-gated (CNG) channels or by protein kinase A (PKA) activity. Instead, ASM olfactory responses to the monoterpene nerol were predominated by the activity of Ca2+-activated chloride channels (TMEM16A), including the cystic fibrosis transmembrane conductance regulator (CFTR) expressed on endo(sarco)plasmic reticulum. These findings demonstrate compartmentalization of Ca2+ signals dictates the odorant receptor OR2W3-induced ASM relaxation and identify a previously unrecognized E-C coupling mechanism that could be exploited in the development of therapeutics to treat obstructive lung diseases.


Assuntos
Anoctamina-1/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Adenilil Ciclases/metabolismo , Brônquios/metabolismo , Cálcio/metabolismo , Células Cultivadas , Humanos , Pulmão/metabolismo , Contração Muscular/fisiologia , Relaxamento Muscular , Miócitos de Músculo Liso/metabolismo , Receptores Odorantes/genética
6.
Int Forum Allergy Rhinol ; 10(6): 748-754, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32282124

RESUMO

BACKGROUND: Chronic rhinosinusitis symptomatology begins in early childhood individuals with cystic fibrosis (CF). Cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to sinus development and disease. Genetic variants of the bitter taste receptor TAS2R38 have been suggested to contribute to sinus disease severity in individuals without CF. Our objective was to explore whether functional TAS2R38 haplotypes and CFTR function are associated with sinus disease or the need for sinus surgery in individuals with CF. METHODS: We conducted a retrospective study using prospectively collected data from the CF Twin-Sibling Study. The function of CFTR was assessed via chloride conductance. Genotyping of the TAS2R38 gene identified patients who were homozygous for the functional haplotype, heterozygous, or homozygous for nonfunctional haplotypes. Clustered multivariate logistic regression was performed, controlling for sex and family relationship. RESULTS: A total of 1291 patients were evaluated. Patients with ≤1% CFTR function were 1.56 times more likely to require sinus surgery than those with >1% CFTR function (p = 0.049). CFTR function did not correlate significantly with the presence of sinus disease (p = 0.30). In addition, there were no statistically significant differences in diagnosis of sinus disease or need for sinus surgery between patients with functional and nonfunctional TAS2R38 haplotypes. CONCLUSION: CFTR function correlates with need for sinus surgery, whereas TAS2R38 function does not appear to contribute to sinus disease or the need for sinus surgery in patients with CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística , Seios Paranasais/cirurgia , Receptores Acoplados a Proteínas G/genética , Sinusite , Adolescente , Adulto , Criança , Pré-Escolar , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/cirurgia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Haplótipos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Nasais , Estudos Retrospectivos , Sinusite/genética , Sinusite/metabolismo , Sinusite/cirurgia , Adulto Jovem
7.
Nat Biomed Eng ; 3(7): 532-544, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31150010

RESUMO

In asthma, the contraction of the airway smooth muscle and the subsequent decrease in airflow involve a poorly understood set of mechanical and biochemical events. Organ-level and molecular-scale models of the airway are frequently based on purely mechanical or biochemical considerations and do not account for physiological mechanochemical couplings. Here, we present a microphysiological model of the airway that allows for the quantitative analysis of the interactions between mechanical and biochemical signals triggered by compressive stress on epithelial cells. We show that a mechanical stimulus mimicking a bronchospastic challenge triggers the marked contraction and delayed relaxation of airway smooth muscle, and that this is mediated by the discordant expression of cyclooxygenase genes in epithelial cells and regulated by the mechanosensor and transcriptional co-activator Yes-associated protein. A mathematical model of the intercellular feedback interactions recapitulates aspects of obstructive disease of the airways, which include pathognomonic features of severe difficult-to-treat asthma. The microphysiological model could be used to investigate the mechanisms of asthma pathogenesis and to develop therapeutic strategies that disrupt the positive feedback loop that leads to persistent airway constriction.


Assuntos
Fenômenos Bioquímicos , Brônquios/fisiologia , Espasmo Brônquico/patologia , Dispositivos Lab-On-A-Chip , Músculo Liso/fisiologia , Asma , Fenômenos Bioquímicos/genética , Fenômenos Biomecânicos/genética , Fenômenos Biomecânicos/fisiologia , Espasmo Brônquico/genética , Comunicação Celular/fisiologia , Células Epiteliais/fisiologia , Regulação da Expressão Gênica , Humanos , Isoenzimas/metabolismo , Mecanotransdução Celular/genética , Contração Muscular/fisiologia , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Estresse Mecânico , Estresse Fisiológico
8.
Cancer Res ; 79(14): 3636-3650, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31123087

RESUMO

Tumor progression to metastasis is not cancer cell autonomous, but rather involves the interplay of multiple cell types within the tumor microenvironment. Here we identify asporin (ASPN) as a novel, secreted mesenchymal stromal cell (MSC) factor in the tumor microenvironment that regulates metastatic development. MSCs expressed high levels of ASPN, which decreased following lineage differentiation. ASPN loss impaired MSC self-renewal and promoted terminal cell differentiation. Mechanistically, secreted ASPN bound to BMP-4 and restricted BMP-4-induced MSC differentiation prior to lineage commitment. ASPN expression was distinctly conserved between MSC and cancer-associated fibroblasts (CAF). ASPN expression in the tumor microenvironment broadly impacted multiple cell types. Prostate tumor allografts in ASPN-null mice had a reduced number of tumor-associated MSCs, fewer cancer stem cells, decreased tumor vasculature, and an increased percentage of infiltrating CD8+ T cells. ASPN-null mice also demonstrated a significant reduction in lung metastases compared with wild-type mice. These data establish a role for ASPN as a critical MSC factor that extensively affects the tumor microenvironment and induces metastatic progression. SIGNIFICANCE: These findings show that asporin regulates key properties of mesenchymal stromal cells, including self-renewal and multipotency, and asporin expression by reactive stromal cells alters the tumor microenvironment and promotes metastatic progression.


Assuntos
Proteínas da Matriz Extracelular/biossíntese , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Progressão da Doença , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Células PC-3 , Microambiente Tumoral
9.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1118-L1126, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30908935

RESUMO

Noncanonical roles for caspase-3 are emerging in the fields of cancer and developmental biology. However, little is known of nonapoptotic functions of caspase-3 in most cell types. We have recently demonstrated a disassociation between caspase-3 activation and execution of apoptosis with accompanying cytoplasmic caspase-3 sequestration and preserved endothelial barrier function. Therefore, we tested the hypothesis that nonapoptotic caspase-3 activation promotes endothelial barrier integrity. Human lung microvascular endothelial cells were exposed to thrombin, a nonapoptotic stimulus, and endothelial barrier function was assessed using electric cell-substrate impedance sensing. Actin cytoskeletal rearrangement and paracellular gap formation were assessed using phalloidin staining. Cell stiffness was evaluated using magnetic twisting cytometry. In addition, cell lysates were harvested for protein analyses. Caspase-3 was inhibited pharmacologically with pan-caspase and a caspase-3-specific inhibitor. Molecular inhibition of caspase-3 was achieved using RNA interference. Cells exposed to thrombin exhibited a cytoplasmic activation of caspase-3 with transient and nonapoptotic decrease in endothelial barrier function as measured by a drop in electrical resistance followed by a rapid recovery. Inhibition of caspases led to a more pronounced and rapid drop in thrombin-induced endothelial barrier function, accompanied by increased endothelial cell stiffness and paracellular gaps. Caspase-3-specific inhibition and caspase-3 knockdown both resulted in more pronounced thrombin-induced endothelial barrier disruption. Taken together, our results suggest cytoplasmic caspase-3 has nonapoptotic functions in human endothelium and can promote endothelial barrier integrity.


Assuntos
Caspase 3/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Mucosa Respiratória/citologia , Junções Íntimas/efeitos dos fármacos , Citoesqueleto de Actina/fisiologia , Permeabilidade Capilar/efeitos dos fármacos , Caspase 3/genética , Células Cultivadas , Impedância Elétrica , Endotélio Vascular/citologia , Humanos , Pulmão/citologia , Interferência de RNA , RNA Interferente Pequeno/genética , Trombina/farmacologia
10.
Am J Respir Cell Mol Biol ; 61(2): 209-218, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30742476

RESUMO

Helper T effector cytokines implicated in asthma modulate the contractility of human airway smooth muscle (HASM) cells. We have reported recently that a profibrotic cytokine, transforming growth factor (TGF)-ß1, induces HASM cell shortening and airway hyperresponsiveness. Here, we assessed whether TGF-ß1 affects the ability of HASM cells to relax in response to ß2-agonists, a mainstay treatment for airway hyperresponsiveness in asthma. Overnight TGF-ß1 treatment significantly impaired isoproterenol (ISO)-induced relaxation of carbachol-stimulated, isolated HASM cells. This single-cell mechanical hyporesponsiveness to ISO was corroborated by sustained increases in myosin light chain phosphorylation. In TGF-ß1-treated HASM cells, ISO evoked markedly lower levels of intracellular cAMP. These attenuated cAMP levels were, in turn, restored with pharmacological and siRNA inhibition of phosphodiesterase 4 and Smad3, respectively. Most strikingly, TGF-ß1 selectively induced phosphodiesterase 4D gene expression in HASM cells in a Smad2/3-dependent manner. Together, these data suggest that TGF-ß1 decreases HASM cell ß2-agonist relaxation responses by modulating intracellular cAMP levels via a Smad2/3-dependent mechanism. Our findings further define the mechanisms underlying ß2-agonist hyporesponsiveness in asthma, and suggest TGF-ß1 as a potential therapeutic target to decrease asthma exacerbations in severe and treatment-resistant asthma.


Assuntos
Asma/fisiopatologia , Músculo Liso/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/agonistas , Asma/tratamento farmacológico , Asma/metabolismo , Broncodilatadores/farmacologia , Carbacol/farmacologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Isoproterenol/farmacologia , Pulmão/metabolismo , Músculo Liso/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Fosforilação , RNA Interferente Pequeno/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Fator de Crescimento Transformador beta2/metabolismo
11.
Sci Rep ; 8(1): 14210, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242256

RESUMO

The root cause of cancer mortality and morbidity is the metastatic spread of the primary tumor, but underlying mechanisms remain elusive. Here we investigate biomechanical interactions that may accompany invasive spread of melanoma cells. We find that metastatic cells can exert considerable traction forces and modify local collagen organization within a 3D matrix. When this re-organization is mimicked using a nano-fabricated model of aligned extracellular matrix fibers, metastatic cells, including less invasive melanoma cells, were in turn induced to align, elongate and migrate, guided by the local ridge orientations. Strikingly, we found that this aligned migration of melanoma cells was accompanied by long-range regulation of cytoskeletal remodeling that show anisotropic stiffening in the direction of fiber orientation suggestive of a positive feedback between ECM fiber alignment and forces exerted by cancer cells. Taken together, our findings suggest that the invasive spread of cancer cells can be defined by complex interplay with the surrounding matrix, during which they both modify the matrix and use the matrix alignment as a persistent migration cue, leading to more extensive and rapid invasive spread.


Assuntos
Melanoma/patologia , Invasividade Neoplásica/patologia , Anisotropia , Fenômenos Biomecânicos/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Colágeno/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Melanoma/metabolismo , Metástase Neoplásica/patologia
12.
FASEB J ; 32(2): 862-874, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29042451

RESUMO

GPCRs have diverse signaling capabilities, based on their ability to assume various conformations. Moreover, it is now appreciated that certain ligands can promote distinct receptor conformations and thereby bias signaling toward a specific pathway to differentially affect cell function. The recently deorphanized G protein-coupled receptor OGR1 [ovarian cancer G protein-coupled receptor 1 ( GPR68)] exhibits diverse signaling events when stimulated by reductions in extracellular pH. We recently demonstrated airway smooth muscle cells transduce multiple signaling events, reflecting a diverse capacity to couple to multiple G proteins. Moreover, we recently discovered that the benzodiazepine lorazepam, more commonly recognized as an agonist of the γ-aminobutyric acid A (GABAA) receptor, can function as an allosteric modulator of OGR1 and, similarly, can promote multiple signaling events. In this study, we demonstrated that different benzodiazepines exhibit a range of biases for OGR1, with sulazepam selectively activating the canonical Gs of the G protein signaling pathway, in heterologous expression systems, as well as in several primary cell types. These findings highlight the potential power of biased ligand pharmacology for manipulating receptor signaling qualitatively, to preferentially activate pathways that are therapeutically beneficial.-Pera, T., Deshpande, D. A., Ippolito, M., Wang, B., Gavrila, A., Michael, J. V., Nayak, A. P., Tompkins, E., Farrell, E., Kroeze, W. K., Roth, B. L., Panettieri, R. A. Jr Benovic, J. L., An, S. S., Dulin, N. O., Penn, R. B. Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines.


Assuntos
Benzodiazepinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Células HEK293 , Humanos , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética
13.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L93-L106, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28882814

RESUMO

We recently demonstrated that blue light induces vasorelaxation in the systemic mouse circulation, a phenomenon mediated by the nonvisual G protein-coupled receptor melanopsin (Opsin 4; Opn4). Here we tested the hypothesis that nonvisual opsins mediate photorelaxation in the pulmonary circulation. We discovered Opsin 3 (Opn3), Opn4, and G protein-coupled receptor kinase 2 (GRK2) in rat pulmonary arteries (PAs) and in pulmonary arterial smooth muscle cells (PASMCs), where the opsins interact directly with GRK2, as demonstrated with a proximity ligation assay. Light elicited an intensity-dependent relaxation of PAs preconstricted with phenylephrine (PE), with a maximum response between 400 and 460 nm (blue light). Wavelength-specific photorelaxation was attenuated in PAs from Opn4-/- mice and further reduced following shRNA-mediated knockdown of Opn3. Inhibition of GRK2 amplified the response and prevented physiological desensitization to repeated light exposure. Blue light also prevented PE-induced constriction in isolated PAs, decreased basal tone, ablated PE-induced single-cell contraction of PASMCs, and reversed PE-induced depolarization in PASMCs when GRK2 was inhibited. The photorelaxation response was modulated by soluble guanylyl cyclase but not by protein kinase G or nitric oxide. Most importantly, blue light induced significant vasorelaxation of PAs from rats with chronic pulmonary hypertension and effectively lowered pulmonary arterial pressure in isolated intact perfused rat lungs subjected to acute hypoxia. These findings show that functional Opn3 and Opn4 in PAs represent an endogenous "optogenetic system" that mediates photorelaxation in the pulmonary vasculature. Phototherapy in conjunction with GRK2 inhibition could therefore provide an alternative treatment strategy for pulmonary vasoconstrictive disorders.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Hipertensão Pulmonar/radioterapia , Fototerapia , Artéria Pulmonar/efeitos da radiação , Opsinas de Bastonetes/fisiologia , Vasodilatação/efeitos da radiação , Animais , Células Cultivadas , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos da radiação , Óxido Nítrico/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo , Vasodilatação/fisiologia
14.
Nat Commun ; 8(1): 142, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747635

RESUMO

A defining hallmark of primary and metastatic cancers is the migration and invasion of malignant cells. These invasive properties involve altered dynamics of the cytoskeleton and one of its major structural components ß-actin. Here we identify AIM1 (absent in melanoma 1) as an actin-binding protein that suppresses pro-invasive properties in benign prostate epithelium. Depletion of AIM1 in prostate epithelial cells increases cytoskeletal remodeling, intracellular traction forces, cell migration and invasion, and anchorage-independent growth. In addition, decreased AIM1 expression results in increased metastatic dissemination in vivo. AIM1 strongly associates with the actin cytoskeleton in prostate epithelial cells in normal tissues, but not in prostate cancers. In addition to a mislocalization of AIM1 from the actin cytoskeleton in invasive cancers, advanced prostate cancers often harbor AIM1 deletion and reduced expression. These findings implicate AIM1 as a key suppressor of invasive phenotypes that becomes dysregulated in primary and metastatic prostate cancer.


Assuntos
Actinas/metabolismo , Movimento Celular , Cristalinas/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cristalinas/genética , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Invasividade Neoplásica , Micrometástase de Neoplasia , Neoplasias da Próstata/genética , Neoplasias da Próstata/ultraestrutura , Ligação Proteica , Interferência de RNA , Transplante Heterólogo
15.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L581-L591, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28642260

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality. Cigarette smoke (CS) drives disease development and progression. The epithelial barrier is damaged by CS with increased monolayer permeability. However, the molecular changes that cause this barrier disruption and the interaction between adhesion proteins and the cytoskeleton are not well defined. We hypothesized that CS alters monolayer integrity by increasing cell contractility and decreasing cell adhesion in epithelia. Normal human airway epithelial cells and primary COPD epithelial cells were exposed to air or CS, and changes measured in protein levels. We measured the cortical tension of individual cells and the stiffness of cells in a monolayer. We confirmed that the changes in acute and subacute in vitro smoke exposure reflect protein changes seen in cell monolayers and tissue sections from COPD patients. Epithelial cells exposed to repetitive CS and those derived from COPD patients have increased monolayer permeability. E-cadherin and ß-catenin were reduced in smoke exposed cells as well as in lung tissue sections from patients with COPD. Moreover, repetitive CS caused increased tension in individual cells and cells in a monolayer, which corresponded with increased polymerized actin without changes in myosin IIA and IIB total abundance. Repetitive CS exposure impacts the adhesive intercellular junctions and the tension of epithelial cells by increased actin polymer levels, to further destabilize cell adhesion. Similar changes are seen in epithelial cells from COPD patients indicating that these findings likely contribute to COPD pathology.


Assuntos
Células Epiteliais/patologia , Fumar , Junções Aderentes/metabolismo , Idoso , Fenômenos Biomecânicos , Caderinas/metabolismo , Adesão Celular , Morte Celular , Permeabilidade da Membrana Celular , Citoesqueleto/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miosina Tipo II/metabolismo , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/patologia
16.
Cancer Res ; 77(12): 3181-3193, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28484075

RESUMO

TWIST1 is a transcription factor critical for development that can promote prostate cancer metastasis. During embryonic development, TWIST1 and HOXA9 are coexpressed in mouse prostate and then silenced postnatally. Here we report that TWIST1 and HOXA9 coexpression are reactivated in mouse and human primary prostate tumors and are further enriched in human metastases, correlating with survival. TWIST1 formed a complex with WDR5 and the lncRNA Hottip/HOTTIP, members of the MLL/COMPASS-like H3K4 methylases, which regulate chromatin in the Hox/HOX cluster during development. TWIST1 overexpression led to coenrichment of TWIST1 and WDR5 as well as increased H3K4me3 chromatin at the Hoxa9/HOXA9 promoter, which was dependent on WDR5. Expression of WDR5 and Hottip/HOTTIP was also required for TWIST1-induced upregulation of HOXA9 and aggressive cellular phenotypes such as invasion and migration. Pharmacologic inhibition of HOXA9 prevented TWIST1-induced aggressive prostate cancer cellular phenotypes in vitro and metastasis in vivo This study demonstrates a novel mechanism by which TWIST1 regulates chromatin and gene expression by cooperating with the COMPASS-like complex to increase H3K4 trimethylation at target gene promoters. Our findings highlight a TWIST1-HOXA9 embryonic prostate developmental program that is reactivated during prostate cancer metastasis and is therapeutically targetable. Cancer Res; 77(12); 3181-93. ©2017 AACR.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Homeodomínio/metabolismo , Invasividade Neoplásica/genética , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/patologia , RNA Longo não Codificante/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Cromatina , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Inativação de Genes , Xenoenxertos , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Invasividade Neoplásica/patologia , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Proteína 1 Relacionada a Twist/genética
17.
J Am Heart Assoc ; 6(2)2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28159817

RESUMO

BACKGROUND: The structural elements of the vascular wall, namely, extracellular matrix and smooth muscle cells (SMCs), contribute to the overall stiffness of the vessel. In this study, we examined the crosslinking-dependent and crosslinking-independent roles of tissue transglutaminase (TG2) in vascular function and stiffness. METHODS AND RESULTS: SMCs were isolated from the aortae of TG2-/- and wild-type (WT) mice. Cell adhesion was examined by using electrical cell-substrate impedance sensing and PicoGreen assay. Cell motility was examined using a Boyden chamber assay. Cell proliferation was examined by electrical cell-substrate impedance sensing and EdU incorporation assays. Cell micromechanics were studied using magnetic torsion cytometry and spontaneous nanobead tracer motions. Aortic mechanics were examined by tensile testing. Vasoreactivity was studied by wire myography. SMCs from TG2-/- mice had delayed adhesion, reduced motility, and accelerated de-adhesion and proliferation rates compared with those from WT. TG2-/- SMCs were stiffer and displayed fewer cytoskeletal remodeling events than WT. Collagen assembly was delayed in TG2-/- SMCs and recovered with adenoviral transduction of TG2. Aortic rings from TG2-/- mice were less stiff than those from WT; stiffness was partly recovered by incubation with guinea pig liver TG2 independent of crosslinking function. TG2-/- rings showed augmented response to phenylephrine-mediated vasoconstriction when compared with WT. In human coronary arteries, vascular media and plaque, high abundance of fibronectin expression, and colocalization with TG2 were observed. CONCLUSIONS: TG2 modulates vascular function/tone by altering SMC contractility independent of its crosslinking function and contributes to vascular stiffness by regulating SMC proliferation and matrix remodeling.


Assuntos
Aorta Torácica/enzimologia , Colágeno/metabolismo , Vasos Coronários/fisiologia , Proteínas de Ligação ao GTP/biossíntese , Músculo Liso Vascular/fisiologia , Transglutaminases/biossíntese , Rigidez Vascular/fisiologia , Animais , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Apoptose , Western Blotting , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Vasos Coronários/citologia , Vasos Coronários/enzimologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Modelos Animais , Músculo Liso Vascular/citologia , Músculo Liso Vascular/enzimologia , Miografia , Proteína 2 Glutamina gama-Glutamiltransferase , Análise de Onda de Pulso , Análise Serial de Tecidos
18.
Am J Respir Cell Mol Biol ; 56(6): 762-771, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28145731

RESUMO

Bitter taste receptors (TAS2Rs) are expressed on human airway smooth muscle (HASM) and evoke marked relaxation. Agonist interaction with TAS2Rs activates phospholipase C and increases compartmentalized intracellular Ca2+ ([Ca2+]i) via inositol 1,4,5 triphosphate. In taste cells, the G protein gustducin couples TAS2R to phospholipase C; however, we find very low levels of Gαgust mRNA or protein in HASM. We hypothesized that another G protein in HASM transmits TAS2R function. TAS2R signaling to [Ca2+]i, extracellular signal-regulated kinase (ERK) 1/2, and physiologic relaxation was sensitive to pertussis toxin, confirming a role for a member of the Gi family. α subunit expression in HASM was Gαi2 > Gαi1 = Gαi3 > Gαtrans1 ≈ Gαtrans2, with Gαgust and Gαo at the limits of detection (>100-fold lower than Gαi2). Small interfering RNA knockdowns in HASM showed losses of [Ca2+]i and ERK1/2 signaling when Gαi1, Gαi2, or Gαi3 were reduced. Gαtrans1 and Gαtrans2 knockdowns had no effect on [Ca2+]i and a minimal, transient effect on ERK1/2 phosphorylation. Furthermore, Gαgust and Gαo knockdowns did not affect any TAS2R signaling. In overexpression experiments in human embryonic kidney-293T cells, we confirmed an agonist-dependent physical interaction between TAS2R14 and Gαi2. ASM cells from transgenic mice expressing a peptide inhibitor of Gαi2 had attenuated relaxation to TAS2R agonist. These data indicate that, unlike in taste cells, TAS2Rs couple to the prevalent G proteins, Gαi1, Gαi2, and Gαi3, with no evidence for functional coupling to Gαgust. This absence of function for the "canonical" TAS2R G protein in HASM may be due to the very low expression of Gαgust, indicating that TAS2Rs can optionally couple to several G proteins in a cell type-dependent manner contingent upon G protein expression.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Pulmão/metabolismo , Relaxamento Muscular , Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos Transgênicos , Relaxamento Muscular/efeitos dos fármacos , Peptídeos/farmacologia , Toxina Pertussis/toxicidade , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Sci Rep ; 6: 38231, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905542

RESUMO

Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (Golf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma.


Assuntos
Asma/metabolismo , Brônquios/metabolismo , Mecanotransdução Celular , Miócitos de Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Asma/patologia , Brônquios/patologia , Humanos , Miócitos de Músculo Liso/patologia
20.
J Biol Chem ; 291(34): 17616-28, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27342779

RESUMO

Bitter taste receptors (TAS2Rs) are G-protein-coupled receptors now recognized to be expressed on extraoral cells, including airway smooth muscle (ASM) where they evoke relaxation. TAS2Rs are difficult to express in heterologous systems, with most receptors being trapped intracellularly. We find, however, that co-expression of ß2-adrenergic receptors (ß2AR) in HEK-293T routes TAS2R14 to the cell surface by forming receptor heterodimers. Cell surface TAS2R14 expression was increased by ∼5-fold when ß2AR was co-expressed. Heterodimer formation was shown by co-immunoprecipitation with tagged receptors, biomolecular fluorescence complementation, and merged confocal images. The dynamic nature of this interaction was shown by: a gene-dose relationship between transfected ß2AR and TAS2R14 expression, enhanced (up to 3-fold) TAS2R14 agonist stimulation of [Ca(2+)]i with ß2AR co-transfection, ∼53% decrease in [Ca(2+)]i signaling with shRNA knockdown of ß2AR in H292 cells, and ∼60% loss of [Ca(2+)]i responsiveness in ßAR knock-out mouse ASM. Once expressed on the surface, we detected unidirectional, conformation-dependent, interaction within the heterodimer, with ß2AR activation rapidly uncoupling TAS2R14 function (∼65% desensitization). Cross-talk was independent of ß2AR internalization and cAMP/PKA, and not accompanied by TAS2R14 internalization. With prolonged ß-agonist exposure, TAS2R14 internalized, consistent with slow recycling of naked TAS2R14 in the absence of the heterodimeric milieu. In studies of ASM mechanics, rapid cross-talk was confirmed at the physiologic level, where relaxation from TAS2R14 agonist was decreased by ∼50% with ß-agonist co-treatment. Thus the ß2AR acts as a double-edged sword: increasing TAS2R14 cell surface expression, but when activated by ß-agonist, partially offsetting the expression phenotype by direct receptor:receptor desensitization of TAS2R14 function.


Assuntos
Sinalização do Cálcio/fisiologia , Regulação da Expressão Gênica/fisiologia , Chaperonas Moleculares/metabolismo , Multimerização Proteica/fisiologia , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Chaperonas Moleculares/agonistas , Chaperonas Moleculares/genética , Multimerização Proteica/efeitos dos fármacos , Receptores Adrenérgicos beta 2/genética , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA