Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 14(8): 3358-3384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855176

RESUMO

With the increase in the aging population, the occurrence of neurological disorders is rising. Recently, stem cell therapy has garnered attention due to its convenient sourcing, minimal invasiveness, and capacity for directed differentiation. However, there are some disadvantages, such as poor quality control, safety assessments, and ethical and logistical issues. Consequently, scientists have started to shift their attention from stem cells to extracellular vesicles due to their similar structures and properties. Beyond these parallels, extracellular vesicles can enhance biocompatibility, facilitate easy traversal of barriers, and minimize side effects. Furthermore, stem cell-derived extracellular vesicles can be engineered to load drugs and modify surfaces to enhance treatment outcomes. In this review, we summarize the functions of native stem cell-derived extracellular vesicles, subsequently review the strategies for the engineering of stem cell-derived extracellular vesicles and their applications in Alzheimer's disease, Parkinson's disease, and stroke, and discuss the challenges and solutions associated with the clinical translation of stem cell-derived extracellular vesicles.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Doença de Parkinson , Células-Tronco , Acidente Vascular Cerebral , Humanos , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Animais , Acidente Vascular Cerebral/terapia , Transplante de Células-Tronco/métodos
2.
PLoS One ; 10(12): e0145783, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26717575

RESUMO

Targeting protein stability with small molecules has emerged as an effective tool to control protein abundance in a fast, scalable and reversible manner. The technique involves tagging a protein of interest (POI) with a destabilizing domain (DD) specifically controlled by a small molecule. The successful construction of such fusion proteins may, however, be limited by functional interference of the DD epitope with electrostatic interactions required for full biological function of proteins. Another drawback of this approach is the remaining endogenous protein. Here, we combined the Cre-LoxP system with an advanced DD and generated a protein regulation system in which the loss of an endogenous protein, in our case the tumor suppressor PTEN, can be coupled directly with a conditionally fine-tunable DD-PTEN. This new system will consolidate and extend the use of DD-technology to control protein function precisely in living cells and animal models.


Assuntos
Regulação da Expressão Gênica/genética , Proteínas de Ligação a Tacrolimo/genética , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/farmacologia , Peixe-Zebra
3.
Proc Natl Acad Sci U S A ; 111(36): 13205-10, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25157163

RESUMO

Protein ubiquitination is a core regulatory determinant of neural development. Previous studies have indicated that the Nedd4-family E3 ubiquitin ligases Nedd4-1 and Nedd4-2 may ubiquitinate phosphatase and tensin homolog (PTEN) and thereby regulate axonal growth in neurons. Using conditional knockout mice, we show here that Nedd4-1 and Nedd4-2 are indeed required for axonal growth in murine central nervous system neurons. However, in contrast to previously published data, we demonstrate that PTEN is not a substrate of Nedd4-1 and Nedd4-2, and that aberrant PTEN ubiquitination is not involved in the impaired axon growth upon deletion of Nedd4-1 and Nedd4-2. Rather, PTEN limits Nedd4-1 protein levels by modulating the activity of mTORC1, a protein complex that controls protein synthesis and cell growth. Our data demonstrate that Nedd4-family E3 ligases promote axonal growth and branching in the developing mammalian brain, where PTEN is not a relevant substrate. Instead, PTEN controls neurite growth by regulating Nedd4-1 expression.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Multiproteicos/metabolismo , Neuritos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Axônios/metabolismo , Córtex Cerebral/citologia , Hipocampo/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Modelos Biológicos , Morfogênese , Ubiquitina-Proteína Ligases Nedd4 , Poliubiquitina/metabolismo , Biossíntese de Proteínas , Ubiquitinação
4.
J Am Chem Soc ; 132(12): 4086-8, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20218600

RESUMO

Precise photochemical control of protein function can be achieved through the site-specific introduction of caging groups. Chemical and enzymatic methods, including in vitro translation and chemical ligation, have been used to photocage proteins in vitro. These methods have been extended to allow the introduction of caged proteins into cells by permeabilization or microinjection, but cellular delivery remains challenging. Since lysine residues are key determinants for nuclear localization sequences, the target of key post-translational modifications (including ubiquitination, methylation, and acetylation), and key residues in many important enzyme active sites, we were interested in photocaging lysine to control protein localization, post-translational modification, and enzymatic activity. Photochemical control of these important functions mediated by lysine residues in proteins has not previously been demonstrated in living cells. Here we synthesized 1 and evolved a pyrrolysyl-tRNA synthetase/tRNA pair to genetically encode the incorporation of this amino acid in response to an amber codon in mammalian cells. To exemplify the utility of this amino acid, we caged the nuclear localization sequences (NLSs) of nucleoplasmin and the tumor suppressor p53 in human cells, thus mislocalizing the proteins in the cytosol. We triggered protein nuclear import with a pulse of light, allowing us to directly quantify the kinetics of nuclear import.


Assuntos
Luz , Lisina/química , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Humanos , Lisina/análogos & derivados , Dados de Sequência Molecular , Estrutura Molecular , Nucleoplasminas/química , Fotoquímica , Processamento de Proteína Pós-Traducional
5.
FEBS Lett ; 580(1): 107-14, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-16364302

RESUMO

Currently, we found that the 70-kDa p70 S6 kinase (p70S6K) directly phosphorylates tau at S262, S214, and T212 sites in vitro. By immunoprecipitation, p-p70S6K (T421/S424) showed a close association with p-tau (S262 and S396/404). Zinc-induced p70S6K activation could only upregulate translation of total S6 and tau but not global proteins in SH-SY5Y cells. The requirement of p70S6K activation was confirmed in the SH-SY5Y cells that overexpress wild-type htau40. Level of p-p70S6K (T421/S424) was only significantly correlated with p-tau at S262, S214, and T212, but not T212/S214, in Alzheimer's disease (AD) brains. These suggested that p70S6K might contribute to tau related pathologies in AD brains.


Assuntos
Proteínas de Membrana/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Linhagem Celular Tumoral , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteínas de Membrana/química , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/química , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , Zinco/química , Zinco/farmacologia
6.
Brain Res Mol Brain Res ; 135(1-2): 40-7, 2005 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15857667

RESUMO

Zinc levels are increased in brain areas severely affected by Alzheimer's disease (AD) pathologies. Zinc has both protective and neurotoxic properties and can stimulate both phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Several kinases related to these pathways including protein kinase B (PKB), p70 S6 kinase (p70S6K), and extracellular signal-regulated kinase 1/2 (ERK1/2) are known cell survival factors and are overactivated in neurons bearing neurofibrillary tangles (NFTs) in AD. The present study aimed to determine whether anti-apoptotic effects of zinc are mediated via these signaling pathways. Zinc was used to treat SH-SY5Y neuroblastoma cells and effects investigated in relation to PKB, p70S6K, and ERK1/2 in the absence and presence of the pro-apoptotic agent staurosporine (STS). Cell damage was evaluated by measuring levels of DNA fragmentation as well as the WST-1 assay for cell viability. Results indicated that: (1) treatment with high doses of zinc (>/=400 microM) for short time periods (2 h reversed an increased DNA fragmentation due to U0126 inhibition of ERK1/2; (3) increased DNA fragmentation due to STS could be protected against by 100 microM zinc; (4) the protective effects of 100 microM zinc on STS-induced DNA fragmentation could be partially reversed by U0126. These results indicate that a zinc-induced anti-apoptotic response in SH-SY5Y cells likely occurs through ERK1/2.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sulfato de Zinco/farmacologia , Western Blotting/métodos , Linhagem Celular Tumoral , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/fisiologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Microscopia Confocal/métodos , Neuroblastoma/patologia , Propídio , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Rodamina 123 , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fatores de Tempo
7.
J Neurochem ; 92(5): 1104-15, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15715661

RESUMO

We have previously reported an aberrant accumulation of activated protein kinase B (PKB), glycogen synthase kinase (GSK)-3beta, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and p70 S6 kinase (p70S6K) in neurons bearing neurofibrillary tangles (NFTs) in Alzheimer's disease (AD). However, the mechanism by which these tau candidate kinases are involved in the regulation of p70S6K and GSK-3beta phosphorylation is unknown. In the current study, 100 microM zinc sulfate was used, and influences of various components of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on p70S6K and GSK-3beta phosphorylation have been investigated in serum-deprived SH-SY5Y neuroblastoma cells. We found that zinc could induce an increase of phosphorylated (p) p70S6K, p-PKB, p-GSK-3beta, p-ERK1/2, p-JNK and p-p38, especially in long-term treatment (4-8 h). Treatment with different inhibitors including rapamycin, wortmannin, LY294002, and U0126, and their combinations, indicated that phosphorylation of p70S6K and GSK-3beta is regulated by rapamycin-dependent, PI3K and MAPK pathways. Furthermore, phosphorylation of p70S6K and GSK-3beta affected levels of tau unphosphorylated at the Tau-1 site and phosphorylated at the PHF-1 site, and p70S6K phosphorylation affected the total tau level. Thus, 100 microM zinc might activate PKB, GSK-3beta, ERK1/2, JNK, p38 and p70S6K, that are consequently involved in tau changes in SH-SY5Y cells.


Assuntos
Linhagem Celular Tumoral/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Zinco/farmacologia , Análise de Variância , Animais , Antibióticos Antineoplásicos/farmacologia , Western Blotting/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Humanos , Imuno-Histoquímica/métodos , Técnicas In Vitro , Microscopia Imunoeletrônica/métodos , Modelos Biológicos , Neuroblastoma , Fosforilação/efeitos dos fármacos , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Sirolimo/farmacologia , Sais de Tetrazólio , Tiazóis , Fatores de Tempo , Sulfato de Zinco/farmacologia , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas tau/metabolismo
8.
Am J Pathol ; 163(2): 591-607, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12875979

RESUMO

The ribosomal S6 protein kinase p70 S6 kinase is known for its role in modulating cell-cycle progression, cell size, and cell survival. In response to mitogen stimulation, p70 S6 kinase activation up-regulates ribosomal biosynthesis and enhances the translational capacity of the cell. In Alzheimer's disease (AD), there is a marked increase in total tau protein in the form of abnormally hyperphosphorylated tau (PHF-tau) in neurons with neurofibrillary tangles (NFTs). In the present study, we investigated whether p70 S6 kinase activation is associated with PHF-tau accumulation in AD. By immunohistochemistry, we found that the levels of phosphorylated p70 S6 kinase (at Thr389 or at Thr421/Ser424) were increased in accordance with the progressive sequence of neurofibrillary changes according to Braak's criteria. Confocal microscopy showed that in AD brain, phosphorylated p70 S6 kinase appeared especially in neurons that are known to later develop NFTs. This pattern of neurons showed dot-like structures of phosphorylated p70 S6 kinase and hyperphosphorylated tau, which partially correlated with rab5 (endosome marker), lamp-1 (lysosome marker), and ubiquitin (ubiquitin-proteasomal system marker). By indirect enzyme-linked immunosorbent assay, phosphorylated p70 S6 kinase (Thr389 or Thr421/Ser424), total tau, and PHF-tau were found to be significantly increased in AD brain as compared to control cases. The levels of total p70 S6 kinase and p70 S6 kinase phosphorylated at Thr421/Ser424 showed significant correlations with the levels of both total tau and PHF-tau. Regression analyses revealed a significant dependence of total tau or PHF-tau on p70 S6 kinase phosphorylated at Thr421/Ser424 rather than at Thr389. The levels of ribosomal protein S6 as well as the levels of markers for the proteolytic system were also significantly increased in AD as compared to control brain. Using a SH-SY5Y neuroblastoma cell model, we found that 100 micro mol/L zinc sulfate could induce p70 S6 kinase phosphorylation and activation, in particular at Thr421/Ser424. This up-regulation of the activated kinase resulted in an increased expression and phosphorylation of tau. Pretreatment of cells with rapamycin (an inhibitor of FRAP/mTOR which is the immediate upstream kinase of the p70 S6 kinase) attenuated the effects induced by zinc. In primary cultured neurons of rat cortical cortex, zinc sulfate treatment could repeat p70 S6 kinase phosphorylation and activation at Thr421/Ser424, followed by increased expression and phosphorylation of tau. Taken together, these data suggest that activated p70 S6 kinase could mediate an up-regulation of tau translation. The partial co-localization of phosphorylated p70 S6 kinase with rab5, lamp-1 and ubiquitin, or PHF-tau with ubiquitin suggests that the activated proteolytic system might not be sufficient to degrade the over-produced and over-phosphorylated tau protein. A p70 S6 kinase modulated up-regulation of tau translation might contribute to PHF-tau accumulation in neurons with neurofibrillary changes.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Neurofibrilas/patologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Regulação para Cima , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Monoclonais/metabolismo , Biomarcadores , Encéfalo/metabolismo , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais/fisiologia , Estatística como Assunto , Células Tumorais Cultivadas , Proteínas tau/genética
9.
Acta Neuropathol ; 105(4): 381-92, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12624792

RESUMO

Protein kinase B (PKB) is an important intermediate in the phosphatidylinositol-3 kinase signaling cascade that acts to phosphorylate glycogen synthase kinase-3 (GSK-3) at its serine 9 residue, thereby inactivating it. Activated GSK-3 has been previously shown to be preferentially associated with neurofibrillary tangles (NFTs) in Alzheimer's disease (AD) brain. In the present study, we performed immunohistochemistry with an antibody to the active form of PKB in brains with different stages of neurofibrillary degeneration. We found that the amount of activated PKB (p-Thr308) increased in correlation to the progressive sequence of AT8 immunoreactivity and neurofibrillary changes assessed according to Braak's criteria. By confocal microscopy, activated PKB (p-Thr308) was found to appear in particular in neurons that are known to later develop NFTs in AD. Western blotting showed that activated PKB was increased by more than 50% in the 16,000- g supernatants of AD brains as compared with normal aged and Huntington's disease controls. This increase in PKB levels corresponded with a several-fold increase in the levels of total tau and abnormally hyperphosphorylated tau at the Tau-1 site. These studies suggest the involvement of PKB/GSK-3 signaling in Alzheimer neurofibrillary degeneration.


Assuntos
Doença de Alzheimer/enzimologia , Encéfalo/enzimologia , Emaranhados Neurofibrilares/enzimologia , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Western Blotting , Encéfalo/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Doença de Huntington/enzimologia , Doença de Huntington/patologia , Imuno-Histoquímica , Isoenzimas/metabolismo , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA