Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 508(4): 1195-1201, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30554658

RESUMO

Phosphoinositide 3-kinase (PI3K)/Akt plays a pivotal role in the vascular response. The present study is to determine whether PI3K/Akt pathway in vascular smooth muscle cells is involved in nitroglycerin (NTG) tolerance and the underlying mechanism. Nitrate tolerance of porcine coronary arteries in vitro was induced by incubation of NTG (10-5 M) for 24 h. Nitrate tolerance in vivo was obtained by subcutaneous injection of mice with NTG (20 mg kg-1, tid, 3 days) and the aortas were used. Protein levels of total and phosphorylated Akt, forkhead box protein O1 (FoxO1), and cGMP-dependent protein kinase (PKG) were determined by western blot analysis. Isometric vessel tension was recorded by organ chamber technique. PKG mRNA was determined by real-time PCR. The cellular translocation of FoxO1 was observed by immunofluorescence. Reactive oxygen species (ROS) level was measured by DHE staining. The vascular relaxation to NTG was significantly inhibited in in vivo and in vitro NTG tolerant arteries. Meanwhile, the protein level of phosphorylated Akt at Ser473 was increased in the tolerant arteries. The attenuated relaxation and the augmented Akt-p were ameliorated by LY294002, a specific inhibitor of PI3K. The protein and mRNA expression of PKG were significantly down-regulated in NTG tolerant arteries, which were reversed by LY294002. The level of phosphorylated FoxO1 at Ser256 and its translocation from the nucleus to the cytosol were both increased in NTG tolerance and were also inhibited by LY294002. ROS production was significantly increased in NTG tolerant arteries, which was not be affected by LY294002 but inhibited by N-acetyl-L-cysteine. In conclusion, the present study suggests that PI3K/Akt in vascular smooth muscle is involved in the development of NTG tolerance via inhibiting PKG transcription and the effect is mediated by FoxO1.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteína Forkhead Box O1/metabolismo , Nitroglicerina/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Animais , Cromonas/farmacologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Vasodilatação/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 486(1): 178-183, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28285136

RESUMO

OBJECTIVE: Endothelium-independent coronary vasoconstriction induced by continuous hypoxia contributes to the development of ischemic heart diseases. Acute elevation of homocysteine (Hcy) has a potent of vasodilation. The present study aims to investigate the role of Hcy in endothelium-independent hypoxic coronary vasoconstriction and its underlying mechanisms. METHODS AND RESULTS: Vessel tension of isolated porcine coronary arteries was measured by organ chamber study and the protein expression were detected by western blot. A sustained contraction of porcine coronary artery was induced when exposed to prolonged hypoxia for more than 15 min, which was significantly reduced by Hcy in a dose-dependent manner but not affected by cysteine or N-acetyl-l-cysteine. Phosphorylated myosin light chain (MLC-p) at Ser19 was decreased when exposure to hypoxia for 15 min, and could be reversed by prolonged hypoxia for 30 and 60 min. The recovery of MLC-p at Ser19 by hypoxia for more than 30 min could be abolished by Hcy. The protein levels of phosphorylated Akt at Ser473 and phosphorylated P85 at Tyr508 were decreased by Hcy in normoxia, and were also reduced exposure to hypoxia for 15 min and then augmented by prolonged hypoxia for more than 30 min, which could be prevented by Hcy. The protein level of P110α was not affected by Hcy or prolonged hypoxia. CONCLUSIONS: This study demonstrates that Hcy can ameliorate the endothelium-independent hypoxic coronary vasoconstriction, in which the inhibition of PI3K/Akt signaling pathway may be involved.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Vasos Coronários/efeitos dos fármacos , Homocisteína/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Animais , Western Blotting , Vasos Coronários/metabolismo , Vasos Coronários/fisiologia , Relação Dose-Resposta a Droga , Endotélio Vascular/fisiologia , Hipóxia , Técnicas In Vitro , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Serina/metabolismo , Suínos , Fatores de Tempo , Tirosina/metabolismo
3.
Exp Cell Res ; 341(2): 177-86, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26844631

RESUMO

C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine with modulation effects on metabolism and inflammation. Adenosine triphosphate (ATP) exerts multiple biological effects in vascular smooth muscle cells (VSMCs) and energy imbalance is involved in vascular diseases. This study aimed to explore the effect of CTRP3 on energy production and its underlying mechanism in VSMCs. Our results indicated that exogenous CTRP3 increased ATP synthesis and the protein expression of oxidative phosphorylation (OXPHOS)-related molecules, including peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, sirtuin-3 (SIRT3), complex I, II, III, and V in cultured VSMCs. Depletion of endogenous CTRP3 by small interfering RNA (siRNA) reduced ATP synthesis and the expression of those molecules. PGC-1α knockdown abrogated CTRP3-induced ATP production and OXPHOS-related protein expression. Furthermore, CTRP3 increased mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential level. Pretreatment with N-acetyl-L-cysteine, a reactive oxygen species scavenger, and cyanidem-chlorophenylhydrazone, an uncoupler of OXPHOS, suppressed CTRP3-induced ROS production, PGC-1α expression and ATP synthesis. In conclusion, CTRP3 modulates mitochondrial energy production through targets of ROS and PGC-1α in VSMCs.


Assuntos
Adipocinas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Acetilcisteína/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Proteínas de Choque Térmico/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA