Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(3): 1534-1543, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007066

RESUMO

Fossil fuel (FF) combustion emissions account for a large, but uncertain, amount of the soot in the atmosphere, play an important role in climate change, and adversely affect human health. However, historical estimates of FF contributions to air pollution are limited by uncertainties in fuel usage and emission factors. Here, we constrained FF soot emissions from southeastern China over the past 110 years, based on a novel radiocarbon method applied to sedimentary soot. The reconstructed soot accumulations reflect the integrated effects of increased FF use caused by economic development and reductions in emissions due to pollution controls. A sharp increase in FF soot started in 1950 as southeastern China industrialized and developed economically, but decreased FF soot fluxes in recent years suggest that pollution controls reduced soot emissions. We compare FF soot history to changes in CO2 emissions, industrial and economic activities, and pollution controls and show that FF soot fluxes are more readily controlled than atmospheric CO2. Our independent FF soot record provides insights into the effects of economic development and controls on air pollution and the environmental impacts from the changes in soot emissions.


Assuntos
Combustíveis Fósseis , Fuligem , Carbono/análise , Dióxido de Carbono , China , Monitoramento Ambiental/métodos , Combustíveis Fósseis/análise , Humanos , Fuligem/análise
2.
PLoS One ; 8(12): e83462, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358286

RESUMO

Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method.


Assuntos
Carbono/análise , Poeira/análise , Monitoramento Ambiental/métodos , Óptica e Fotônica/métodos , Solo/química , China , Cidades , Humanos , Fuligem/análise , Temperatura
3.
Chemosphere ; 91(11): 1462-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23395362

RESUMO

Three techniques were used to measure black carbon (BC) in samples from Chinese loess-paleosol sequences. The results obtained by (1) chemo-thermal oxidation (CTO, performed two ways), (2) acid dichromate oxidation (Cr2O7), and (3) thermal-optical reflectance (TOR) were intercompared because prior studies have shown that the methods can yield disparate results. BC concentrations did vary among the methods, most likely because they measured different components of the BC continuum, but the high-temperature BC (soot) determined by CTO was correlated with the BC and soot obtained by TOR. The CTO and TOR methods both yielded statistically significant linear relationships for loess and lake sediments that had incremental additions of a standard (SRM-1649a). The results also showed that charred material was more abundant in these test sediments than soot carbon. Data for BC in Luochuan loess generated using TOR showed a trend similar to that of magnetic susceptibility, that is, high BC and large susceptibilities during the last interglacial and low values for both variables in the last glacial. The results thus indicate that the TOR method is well suited for studies of sedimentary materials and that more biomass burned during the last interglacial than in the last glacial.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Poluentes do Solo/análise , Fuligem/análise , China , Cromatos/química , Temperatura Alta , Oxirredução
4.
Chemosphere ; 69(4): 569-74, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17462705

RESUMO

Many optical, thermal and chemical methods exist for the measurement of elemental carbon (EC) but are unable or neglect to differentiate between the different forms of EC such as char- or soot-EC. The thermal/optical reflectance (TOR) method applies different temperatures for measuring EC and organic carbon (OC) contents through programmed, progressive heating in a controlled atmosphere, making available eight separate carbon fractions - four OC, one pyrolyzed organic carbon, and three EC. These fractions were defined by temperature protocol, oxidation atmosphere, and laser-light reflectance/transmittance. Stepwise thermal evolutional oxidation of the TOR method makes it possible to distinguish char- from soot-EC. In this study, different EC reference materials, including char and soot, were used for testing it. The thermograms of EC reference materials showed that activation energy is lower for char- than soot-EC. Low-temperature EC1 (550 degrees C in a 98% He/2% O2 atmosphere) is more abundant for char samples. Diesel and n-hexane soot samples exhibit similar EC2 (700 degrees C in a 98% He/2% O2 atmosphere) peaks, while carbon black samples peaks at both EC2 and EC3 (800 degrees C in a 98% He/2% O2 atmosphere). These results supported the use of the TOR method to discriminate between char- and soot-EC.


Assuntos
Carbono/análise , Fuligem/análise , Temperatura Alta , Óptica e Fotônica , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA