Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716727

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer characterized by a poor outcome and an increasing incidence. A significant majority (>80%) of newly diagnosed cases are deemed unresectable, leaving chemotherapy as the sole viable option, though with only moderate success. This necessitates the identification of improved therapeutic options for PDA. We hypothesized that there are temporal variations in cancer-relevant processes within PDA tumors, offering insights into the optimal timing of drug administration - a concept termed chronotherapy. In this study, we explored the presence of the circadian transcriptome in PDA using patient-derived organoids and validated these findings by comparing PDA data from The Cancer Genome Atlas with noncancerous healthy pancreas data from GTEx. Several PDA-associated pathways (cell cycle, stress response, Rho GTPase signaling) and cancer driver hub genes (EGFR and JUN) exhibited a cancer-specific rhythmic pattern intricately linked to the circadian clock. Through the integration of multiple functional measurements for rhythmic cancer driver genes, we identified top chronotherapy targets and validated key findings in molecularly divergent pancreatic cancer cell lines. Testing the chemotherapeutic efficacy of clinically relevant drugs further revealed temporal variations that correlated with drug-target cycling. Collectively, our study unravels the PDA circadian transcriptome and highlights a potential approach for optimizing chrono-chemotherapeutic efficacy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Transcriptoma , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ritmo Circadiano/genética , Organoides/efeitos dos fármacos , Relógios Circadianos/genética , Relógios Circadianos/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Cronoterapia/métodos
2.
Proc Natl Acad Sci U S A ; 121(7): e2311854121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319971

RESUMO

Studies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular circadian rhythms in noncancerous and cancerous human breast tissues and their clinical relevance are largely unknown. We reconstructed rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets. For noncancerous breast tissue, inflammatory, epithelial-mesenchymal transition (EMT), and estrogen responsiveness pathways show circadian modulation. Among tumors, clock correlation analysis demonstrates subtype-specific changes in circadian organization. Luminal A organoids and informatic ordering of luminal A samples exhibit continued, albeit dampened and reprogrammed rhythms. However, CYCLOPS magnitude, a measure of global rhythm strength, varied widely among luminal A samples. Cycling of EMT pathway genes was markedly increased in high-magnitude luminal A tumors. Surprisingly, patients with high-magnitude tumors had reduced 5-y survival. Correspondingly, 3D luminal A cultures show reduced invasion following molecular clock disruption. This study links subtype-specific circadian disruption in breast cancer to EMT, metastatic potential, and prognosis.


Assuntos
Neoplasias da Mama , Relógios Circadianos , Humanos , Feminino , Neoplasias da Mama/patologia , Relógios Circadianos/genética , Ritmo Circadiano , Estrogênios , Prognóstico
3.
bioRxiv ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37293090

RESUMO

Studies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular rhythms in non-cancerous and cancerous human breast tissues are largely unknown. We reconstructed rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets. For non-cancerous tissue, the inferred order of core-circadian genes matches established physiology. Inflammatory, epithelial-mesenchymal transition (EMT), and estrogen responsiveness pathways show circadian modulation. Among tumors, clock correlation analysis demonstrates subtype-specific changes in circadian organization. Luminal A organoids and informatic ordering of Luminal A samples exhibit continued, albeit disrupted rhythms. However, CYCLOPS magnitude, a measure of global rhythm strength, varied widely among Luminal A samples. Cycling of EMT pathway genes was markedly increased in high-magnitude Luminal A tumors. Patients with high-magnitude tumors had reduced 5-year survival. Correspondingly, 3D Luminal A cultures show reduced invasion following molecular clock disruption. This study links subtype-specific circadian disruption in breast cancer to EMT, metastatic potential, and prognosis.

4.
Bioinformatics ; 38(24): 5375-5382, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36321857

RESUMO

MOTIVATION: Years of time-series gene expression studies have built a strong understanding of clock-controlled pathways across species. However, comparatively little is known about how 'non-clock' pathways influence clock function. We need a strong understanding of clock-coupled pathways in human tissues to better appreciate the links between disease and clock function. RESULTS: We developed a new computational approach to explore candidate pathways coupled to the clock in human tissues. This method, termed LTM, is an in silico screen to infer genetic influences on circadian clock function. LTM uses natural variation in gene expression in human data and directly links gene expression variation to clock strength independent of longitudinal data. We applied LTM to three human skin and one melanoma datasets and found that the cell cycle is the top candidate clock-coupled pathway in healthy skin. In addition, we applied LTM to thousands of tumor samples from 11 cancer types in the TCGA database and found that extracellular matrix organization-related pathways are tightly associated with the clock strength in humans. Further analysis shows that clock strength in tumor samples is correlated with the proportion of cancer-associated fibroblasts and endothelial cells. Therefore, we show both the power of LTM in predicting clock-coupled pathways and classify factors associated with clock strength in human tissues. AVAILABILITY AND IMPLEMENTATION: LTM is available on GitHub (https://github.com/gangwug/LTMR) and figshare (https://figshare.com/articles/software/LTMR/21217604) to facilitate its use. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Relógios Circadianos , Humanos , Relógios Circadianos/genética , Células Endoteliais , Genoma , Ciclo Celular/genética
5.
FEBS J ; 288(2): 614-639, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32383312

RESUMO

Circadian disruption influences metabolic health. Metabolism modulates circadian function. However, the mechanisms coupling circadian rhythms and metabolism remain poorly understood. Here, we report that cystathionine ß-synthase (CBS), a central enzyme in one-carbon metabolism, functionally interacts with the core circadian protein cryptochrome 1 (CRY1). In cells, CBS augments CRY1-mediated repression of the CLOCK/BMAL1 complex and shortens circadian period. Notably, we find that mutant CBS-I278T protein, the most common cause of homocystinuria, does not bind CRY1 or regulate its repressor activity. Transgenic CbsZn/Zn  mice, while maintaining circadian locomotor activity period, exhibit reduced circadian power and increased expression of E-BOX outputs. CBS function is reciprocally influenced by CRY1 binding. CRY1 modulates enzymatic activity of the CBS. Liver extracts from Cry1-/- mice show reduced CBS activity that normalizes after the addition of exogenous wild-type (WT) CRY1. Metabolomic analysis of WT, CbsZn/Zn , Cry1-/- , and Cry2-/- samples highlights the metabolic importance of endogenous CRY1. We observed temporal variation in one-carbon and transsulfuration pathways attributable to CRY1-induced CBS activation. CBS-CRY1 binding provides a post-translational switch to modulate cellular circadian physiology and metabolic control.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Cistationina beta-Sintase/genética , Metaboloma/genética , Processamento de Proteína Pós-Traducional , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Sequência de Aminoácidos , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/deficiência , Cistationina beta-Sintase/metabolismo , Elementos E-Box , Feminino , Células HEK293 , Humanos , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Knockout , Mutação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
6.
Sci Transl Med ; 10(458)2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209245

RESUMO

The discovery that half of the mammalian protein-coding genome is regulated by the circadian clock has clear implications for medicine. Recent studies demonstrated that the circadian clock influences therapeutic outcomes in human heart disease and cancer. However, biological time is rarely given clinical consideration. A key barrier is the absence of information on tissue-specific molecular rhythms in the human body. We have applied the cyclic ordering by periodic structure (CYCLOPS) algorithm, designed to reconstruct sample temporal order in the absence of time-of-day information, to the gene expression collection of 13 tissues from 632 human donors. We identified rhythms in gene expression across the body; nearly half of protein-coding genes were shown to be cycling in at least 1 of the 13 tissues analyzed. One thousand of these cycling genes encode proteins that either transport or metabolize drugs or are themselves drug targets. These results provide a useful resource for studying the role of circadian rhythms in medicine and support the idea that biological time might play a role in determining drug response.


Assuntos
Ritmo Circadiano/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica , Especificidade de Órgãos/genética , Adulto , Idoso , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Cell Metab ; 28(2): 310-323.e6, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30043755

RESUMO

The effectiveness of Roux-en-Y gastric bypass (RYGB) against obesity and its comorbidities has generated excitement about developing new, less invasive treatments that use the same molecular mechanisms. Although controversial, RYGB-induced improvement of metabolic function may not depend entirely upon weight loss. To elucidate the differences between RYGB and dieting, we studied several individual organ molecular responses and generated an integrative, interorgan view of organismal physiology. We also compared murine and human molecular signatures. We show that, although dieting and RYGB can bring about the same degree of weight loss, post-RYGB physiology is very different. RYGB induces distinct, organ-specific adaptations in a temporal pattern that is characterized by energetically demanding processes, which may be coordinated by HIF1a activation and the systemic repression of growth hormone receptor signaling. Many of these responses are conserved in rodents and humans and may contribute to the remarkable ability of surgery to induce and sustain metabolic improvement.


Assuntos
Anastomose em-Y de Roux/reabilitação , Dieta Redutora/métodos , Derivação Gástrica/reabilitação , Obesidade Mórbida , Tempo , Redução de Peso/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Intestino Delgado/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Obesidade Mórbida/dietoterapia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Transcriptoma
8.
Cell Metab ; 25(4): 961-974.e4, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380384

RESUMO

The intricate connection between the circadian clock and metabolism remains poorly understood. We used high temporal resolution metabolite profiling to explore clock regulation of mouse liver and cell-autonomous metabolism. In liver, ∼50% of metabolites were circadian, with enrichment of nucleotide, amino acid, and methylation pathways. In U2 OS cells, 28% were circadian, including amino acids and NAD biosynthesis metabolites. Eighteen metabolites oscillated in both systems and a subset of these in primary hepatocytes. These 18 metabolites were enriched in methylation and amino acid pathways. To assess clock dependence of these rhythms, we used genetic perturbation. BMAL1 knockdown diminished metabolite rhythms, while CRY1 or CRY2 perturbation generally shortened or lengthened rhythms, respectively. Surprisingly, CRY1 knockdown induced 8 hr rhythms in amino acid, methylation, and vitamin metabolites, decoupling metabolite from transcriptional rhythms, with potential impact on nutrient sensing in vivo. These results provide the first comprehensive views of circadian liver and cell-autonomous metabolism.


Assuntos
Relógios Circadianos/genética , Metaboloma/genética , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Células Cultivadas , Ritmo Circadiano/genética , Creatina/metabolismo , Criptocromos/metabolismo , Redes Reguladoras de Genes , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Nitrogênio/metabolismo , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 114(20): 5312-5317, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28439010

RESUMO

Circadian rhythms modulate many aspects of physiology. Knowledge of the molecular basis of these rhythms has exploded in the last 20 years. However, most of these data are from model organisms, and translation to clinical practice has been limited. Here, we present an approach to identify molecular rhythms in humans from thousands of unordered expression measurements. Our algorithm, cyclic ordering by periodic structure (CYCLOPS), uses evolutionary conservation and machine learning to identify elliptical structure in high-dimensional data. From this structure, CYCLOPS estimates the phase of each sample. We validated CYCLOPS using temporally ordered mouse and human data and demonstrated its consistency on human data from two independent research sites. We used this approach to identify rhythmic transcripts in human liver and lung, including hundreds of drug targets and disease genes. Importantly, for many genes, the circadian variation in expression exceeded variation from genetic and other environmental factors. We also analyzed hepatocellular carcinoma samples and show these solid tumors maintain circadian function but with aberrant output. Finally, to show how this method can catalyze medical translation, we show that dosage time can temporally segregate efficacy from dose-limiting toxicity of streptozocin, a chemotherapeutic drug. In sum, these data show the power of CYCLOPS and temporal reconstruction in bridging basic circadian research and clinical medicine.


Assuntos
Ritmo Circadiano/fisiologia , Perfilação da Expressão Gênica/métodos , Estatística como Assunto/métodos , Algoritmos , Animais , Proteínas CLOCK/metabolismo , Bases de Dados Genéticas , Humanos , Fígado/metabolismo , Fígado/fisiologia , Neoplasias Hepáticas/metabolismo , Pulmão/metabolismo , Pulmão/fisiologia , Aprendizado de Máquina , Camundongos , Transcrição Gênica/genética
10.
J Biol Rhythms ; 31(3): 244-57, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26955841

RESUMO

Several tools use prior biological knowledge to interpret gene expression data. However, existing enrichment tools assume that variables are monotonic and incorrectly measure the distance between periodic phases. As a result, these tools are poorly suited for the analysis of the cell cycle, circadian clock, or other periodic systems. Here, we develop Phase Set Enrichment Analysis (PSEA) to incorporate prior knowledge into the analysis of periodic data. PSEA identifies biologically related gene sets showing temporally coordinated expression. Using synthetic gene sets of various sizes generated from von Mises (circular normal) distributions, we benchmarked PSEA alongside existing methods. PSEA offered enhanced sensitivity over a broad range of von Mises distributions and gene set sizes. Importantly, and unlike existing tools, the sensitivity of PSEA is independent of the mean expression phase of the set. We applied PSEA to 4 published datasets. Application of PSEA to the mouse circadian atlas revealed that several pathways, including those regulating immune and cell-cycle function, demonstrate temporal orchestration across multiple tissues. We then applied PSEA to the phase shifts following a restricted feeding paradigm. We found that this perturbation disrupts intraorgan metabolic synchrony in the liver, altering the timing between anabolic and catabolic pathways. Reanalysis of expression data using custom gene sets derived from recent ChIP-seq results revealed circadian transcriptional targets bound exclusively by CLOCK, independently of BMAL1, differ from other exclusive circadian output genes and have well-synchronized phases. Finally, we used PSEA to compare 2 cell-cycle datasets. PSEA increased the apparent biological overlap while also revealing evidence of cell-cycle dysregulation in these cancer cells. To encourage its use by the community, we have implemented PSEA as a Java application. In sum, PSEA offers a powerful new tool to investigate large-scale, periodic data for biological insight.


Assuntos
Relógios Circadianos/genética , Estatística como Assunto , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Perfilação da Expressão Gênica , Humanos , Fígado/fisiologia , Camundongos , Software
11.
PLoS Biol ; 12(4): e1001840, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24737000

RESUMO

Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Inteligência Artificial , Linhagem Celular , Relógios Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/biossíntese , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Criptocromos/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Alinhamento de Sequência , Transcrição Gênica/genética
12.
J Appl Physiol (1985) ; 94(3): 1003-11, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12571131

RESUMO

To evaluate the effect of increasing smooth muscle activation on the distribution of ventilation, lung impedance and expired gas concentrations were measured during a 16-breath He-washin maneuver in five nonasthmatic subjects at baseline and after each of three doses of aerosolized methacholine. Values of dynamic lung elastance (El,dyn), the curvature of washin plots, and the normalized slope of phase III (S(N)) were obtained. At the highest dose, El,dyn was 2.6 times the control value and S(N) for the 16th breath was 0.65 liter(-1). A previously described model of a constricted terminal airway was extended to include variable muscle activation, and the extended model was tested against these data. The model predicts that the constricted airway has two stable states. The impedances of the two stable states are independent of smooth muscle activation, but driving pressure and the number of airways in the high-resistance state increase with increasing muscle activation. Model predictions and experimental data agree well. We conclude that, as a result of the bistability of the terminal airways, the ventilation distribution in the constricted lung is bimodal.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Gases , Pulmão/fisiologia , Administração por Inalação , Adulto , Pressão do Ar , Resistência das Vias Respiratórias/efeitos dos fármacos , Algoritmos , Broncoconstritores/administração & dosagem , Broncoconstritores/farmacologia , Constrição Patológica , Feminino , Hélio , Humanos , Pulmão/efeitos dos fármacos , Medidas de Volume Pulmonar , Masculino , Cloreto de Metacolina/administração & dosagem , Cloreto de Metacolina/farmacologia , Modelos Biológicos , Mecânica Respiratória/efeitos dos fármacos , Mecânica Respiratória/fisiologia , Volume de Ventilação Pulmonar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA