Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 9: 5515-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25473288

RESUMO

BACKGROUND: Cerium oxide nanoparticles (CeO2) have been shown to be a novel therapeutic in many biomedical applications. Gold (Au) nanoparticles have also attracted widespread interest due to their chemical stability and unique optical properties. Thus, decorating Au on CeO2 nanoparticles would have potential for exploitation in the biomedical field. METHODS: In the present work, CeO2 nanoparticles synthesized by a chemical combustion method were supported with 3.5% Au (Au/CeO2) by a deposition-precipitation method. The as-synthesized Au, CeO2, and Au/CeO2 nanoparticles were evaluated for antibacterial activity and cytotoxicity in RAW 264.7 normal cells and A549 lung cancer cells. RESULTS: The as-synthesized nanoparticles were characterized by X-ray diffraction, scanning and transmission electron microscopy, and ultraviolet-visible measurements. The X-ray diffraction study confirmed the formation of cubic fluorite-structured CeO2 nanoparticles with a size of 10 nm. All synthesized nanoparticles were nontoxic towards RAW 264.7 cells at doses of 0-1,000 µM except for Au at >100 µM. For A549 cancer cells, Au/CeO2 had the highest inhibitory effect, followed by both Au and CeO2 which showed a similar effect at 500 and 1,000 µM. Initial binding of nanoparticles occurred through localized positively charged sites in A549 cells as shown by a shift in zeta potential from positive to negative after 24 hours of incubation. A dose-dependent elevation in reactive oxygen species indicated that the pro-oxidant activity of the nanoparticles was responsible for their cytotoxicity towards A549 cells. In addition, cellular uptake seen on transmission electron microscopic images indicated predominant localization of nanoparticles in the cytoplasmic matrix and mitochondrial damage due to oxidative stress. With regard to antibacterial activity, both types of nanoparticles had the strongest inhibitory effect on Bacillus subtilis in monoculture systems, followed by Salmonella enteritidis, Escherichia coli, and Staphylococcus aureus, while, in coculture tests with Lactobacillus plantarum, S. aureus was inhibited to a greater extent than the other bacteria. CONCLUSION: Gold-supported CeO2 nanoparticles may be a potential nanomaterial for in vivo application owing to their biocompatible and antibacterial properties.


Assuntos
Antibacterianos/farmacologia , Cério/toxicidade , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Bactérias/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cério/química , Cério/farmacologia , Contagem de Colônia Microbiana , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Camundongos , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA