Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Carbohydr Polym ; 346: 122596, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245487

RESUMO

Drug treatment of glioblastoma, the most aggressive and widespread form of brain cancer, is complicated due to the difficulty of penetration of chemotherapeutic drugs through the blood-brain barrier (BBB). Moreover, with surgical removal of tumors, in 90 % of cases they reappear near the original focus. To solve this problem, we propose to use hydrogel based on cellulose nanocrystals grafted with poly(N-isopropylacrylamide) (CNC-g-PNIPAM) as a promising material for filling postoperative cavities in the brain with the release of antitumor drugs. The CNC-g-PNIPAM is formed by "grafting to" method for precise control of molecular weight and grafting density. This colloidal system is liquid under injection conditions (at r. t.) and turns into a gel at human body temperature (when filling the postoperative area). It was shown for the first time that due to the rod-shaped of CNC, the gel has a fibrillar structure and, thus, mechanical properties similar to those of brain tissue, including nonlinear mechanics (strain-stiffening and compression softening). The biocompatibility of the hydrogel with primary brain cells is demonstrated. In addition, the release of the antitumor drug paclitaxel from the hydrogel and its antitumor activity is shown. The resulting nanocolloid system provides an innovative alternative approach to filling postoperative cavities and can be used for postoperative treatment due to the programmable release of drugs, as well as for in vitro modeling of tumor interaction with the BBB affecting drug transport in the brain.


Assuntos
Resinas Acrílicas , Materiais Biocompatíveis , Celulose , Hidrogéis , Nanopartículas , Celulose/química , Nanopartículas/química , Resinas Acrílicas/química , Humanos , Animais , Materiais Biocompatíveis/química , Hidrogéis/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Paclitaxel/química , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Temperatura , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Liberação Controlada de Fármacos , Barreira Hematoencefálica/metabolismo
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125990

RESUMO

The terpolymers of N-vinylpyrrolidone (VP) with acrylic acid and triethylene glycol methacrylate were synthesized with more than 90% yield by radical copolymerization in ethanol from monomeric mixtures of different molar composition (98:2:2, 95:5: 2 and 98:2:5) and their monomer composition, absolute molecular masses and hydrodynamic radii in aqueous media were determined. Using the MTT test, these terpolymers were established to be low toxic for non-tumor Vero cells and HeLa tumor cells. Polymer compositions of hydrophobic dye methyl pheophorbide a (MPP) based on studied terpolymers and linear polyvinylpyrrolidone (PVP) were obtained and characterized in water solution. Quantum-chemical modeling of the MPP-copolymer structures was conducted, and the possibility of hydrogen bond formation between terpolymer units and the MPP molecule was shown. Using fluorescence microscopy, the accumulation and distribution of polymer particles in non-tumor (FetMSC) and tumor (HeLa) cells was studied, and an increase in the accumulation of MPP with both types of particles was found.


Assuntos
Acrilatos , Humanos , Animais , Chlorocebus aethiops , Acrilatos/química , Células Vero , Células HeLa , Sistemas de Liberação de Medicamentos , Pirrolidinonas/química , Metacrilatos/química , Polietilenoglicóis/química , Polímeros/química , Polímeros/síntese química , Sobrevivência Celular/efeitos dos fármacos
3.
Dalton Trans ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189403

RESUMO

Design and development of novel, low-cost and efficient electrocatalysts for oxygen evolution reaction (OER) in alkaline media is crucial for lowering the reaction overpotential and thus decreasing the energy input during the water electrolysis process. Herein, we present the synthesis of new 14-membered bis-thiosemicarbazide and bis-isothiosemicarbazide macrocycles and their nickel(II) complexes characterized by spectroscopic techniques (1H and 13C NMR, IR, UV-vis), electrospray ionization mass spectrometry, single crystal X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) and cyclic voltammetry. Finally, the activity of nickel(II) complexes towards OER is reported. NiIILSEt delivered a current density of 10 mA cm-2 at the lowest overpotential of 350 mV with the lowest Tafel slope of 93 mV dec-1. The high performance of NiIILSEt might be attributed to its high surface area and thus abundant active sites with the observed low charge-transfer resistance enabling the effective current flow through the electrocatalyst. Square-planar coordination geometry and increment in Ni oxidation state are believed to favor its OER performance. Beside high activity towards OER, NiIILSEt demonstrated excellent long-term stability with continuous operation, advocating its possible application in commercial systems.

4.
J Biomed Sci ; 31(1): 75, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044206

RESUMO

BACKGROUND: Among the non-traditional antibacterial agents in development, only a few targets critical Gram-negative bacteria such as carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter baumannii or cephalosporin-resistant Enterobacteriaceae. Endolysins and their genetically modified versions meet the World Health Organization criteria for innovation, have a novel mode of antibacterial action, no known bacterial cross-resistance, and are being intensively studied for application against Gram-negative pathogens. METHODS: The study presents a multidisciplinary approach, including genetic engineering of LysECD7-SMAP and production of recombinant endolysin, its analysis by crystal structure solution following molecular dynamics simulations and evaluation of antibacterial properties. Two types of antimicrobial dosage forms were formulated, resulting in lyophilized powder for injection and hydroxyethylcellulose gel for topical administration. Their efficacy was estimated in the treatment of sepsis, and pneumonia models in BALB/c mice, diabetes-associated wound infection in the leptin receptor-deficient db/db mice and infected burn wounds in rats. RESULTS: In this work, we investigate the application strategies of the engineered endolysin LysECD7-SMAP and its dosage forms evaluated in preclinical studies. The catalytic domain of the enzyme shares the conserved structure of endopeptidases containing a putative antimicrobial peptide at the C-terminus of polypeptide chain. The activity of endolysins has been demonstrated against a range of pathogens, such as Klebsiella pneumoniae, A. baumannii, P. aeruginosa, Staphylococcus haemolyticus, Achromobacter spp, Burkholderia cepacia complex and Haemophylus influenzae, including those with multidrug resistance. The efficacy of candidate dosage forms has been confirmed in in vivo studies. Some aspects of the interaction of LysECD7-SMAP with cell wall molecular targets are also discussed. CONCLUSIONS: Our studies demonstrate the potential of LysECD7-SMAP therapeutics for the systemic or topical treatment of infectious diseases caused by susceptible Gram-negative bacterial species and are critical to proceed LysECD7-SMAP-based antimicrobials trials to advanced stages.


Assuntos
Endopeptidases , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Camundongos Endogâmicos BALB C , Animais , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Camundongos , Endopeptidases/farmacologia , Endopeptidases/administração & dosagem , Bactérias Gram-Negativas/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Ratos , Masculino , Engenharia de Proteínas/métodos
5.
Molecules ; 29(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39064826

RESUMO

In the past, polyacrylamide hydrogel was a popular choice for breast augmentation filler, and many women underwent mammoplasty with this gel. However, due to frequent complications, the use of polyacrylamide hydrogel in mammoplasty has been banned. Despite this ban, patients experiencing complications still seek medical treatment. The aim of this study was to investigate the fate of the polymer over a defined implantation period. Biopsies of breast implants were obtained from patients with 23 and 27 years of post-mammoplasty. These biopsies were meticulously purified from biological impurities and subjected to analysis using IR spectrometry, liquid chromatography-mass spectrometry, gas chromatography, and differential scanning calorimetry. The findings revealed the presence of polyacrylamide hydrogel residues, along with degradation products, within the infected material. Notably, the low-molecular-weight degradation products revealed via gas chromatography are aggressive and toxic substances capable of inducing chronic inflammation. This study sheds light on the long-term consequences of polyacrylamide hydrogel implantation, highlighting the persistence of harmful degradation products and their role in exacerbating patient complications.


Assuntos
Resinas Acrílicas , Inflamação , Humanos , Resinas Acrílicas/química , Feminino , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Implantes de Mama/efeitos adversos , Adulto , Mamoplastia , Pessoa de Meia-Idade
6.
bioRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39026718

RESUMO

BACKGROUND: High-risk neuroblastoma (HR-NBL) is an aggressive tumor of the sympathetic nervous system with high risk of relapse and poor overall survival. Allogeneic hematopoietic cell transplant (allo-HCT) has been used previously in HR-NBL patients; however, graft-versus-host-disease (GVHD) and disease progression have limited clinical application. Ex-vivo stimulated allogeneic natural killer (NK) cells represent a potential approach to enhance the graft-versus-tumor (GVT) effect without exacerbation of GVHD but have not shown efficacy in NBL. METHODS: Ex-vivo stimulated NK cells from C57BL/6NCr (B6) mice were expanded with soluble IL-15/IL-15Rα alone or with irradiated CD137L/CD54+ AgN2a-4P (15-4P) at a 1:1 ratio for 10-12 days. Allogeneic NK cells were then analyzed for activation, proliferation, cytokine production, and cytotoxicity against two murine NBL cell lines, Neuro2a and NXS2, in the absence or presence of anti-TIM-3. Lethally irradiated B6AJF1 Mice received allo-HCT from B6 donors followed by NBL challenge after 7 days to mimic tumor relapse. Select groups received anti-TIM-3 starting on day 9 for every 4 days with/without infusions of 15-4P B6 NK cells on days 14, 21, and 28. In select experiments, T cell and NK cells were selectively depleted to establish their contribution to the GVT effect. All groups were analyzed for tumor growth, GVHD and overall survival. RESULTS: Co-culturing NK cells with 15-4P results in 78-fold expansion with increased expression of Ki-67 and NKG2D, NKp46, TRAIL and TIM-3. 15-4P stimulated allogeneic NK cells showed enhanced cytotoxicity against NBL compared to IL-15 NK cells alone but was limited in part due to high expression of TIM-3 ligands on Neuro-2a compared to NXS2. The addition of TIM-3 blockade further enhanced NK cytotoxicity versus Neuro-2a, with enhanced 15-4P NK cell degranulation, Eomes, TRAIL and FasL expression observed. Analysis of RNA from 15-4P NK cells exposed to TIM-3 blockade showed gene expression of chemokines, NKG2D/DAP12 signaling, non-canonical NF-κb pathway and TRAIL signaling. Blockade of NKG2D, TRAIL or FasL on 15-4P NK cells abrogated cytotoxicity. In vivo, the combination of 15-4P stimulated allogeneic NK cells and TIM-3 blockade after allo-HCT resulted in prolonged survival against NBL with decreased tumor burden compared to NK cells or anti-TIM-3 alone, without inducing GVHD. Depletion of NK cells, but not T cells, abrogated the GVT effect. CONCLUSION: Allo-HCT can be a platform for treating NBL using combination ex-vivo stimulated allogeneic NK cell therapy with TIM-3 blockade to enhance the GVT effect without inducing GVHD.

7.
J Gastrointest Cancer ; 55(3): 1190-1198, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38829580

RESUMO

BACKGROUND: Rectal cancer (RC) occupies a leading position in the structure of oncological morbidity and mortality. Aberrant methylation of tumor-suppressor genes and hypomethylation of retrotransposons were shown to be detectable in cell-free DNA, circulating in the blood (cfDNA) of cancer patients, indicating the possibility to use them as diagnostic and prognosis markers. PURPOSE: Evaluation of the changes in the methylation level of LINE-1 elements and SEPTIN9 and IKZF1 genes in the cell-surface-bound cfDNA (csb-cfDNA) from the blood of RC patients after antitumor therapy at a long-term follow-up. METHODS: Blood samples were obtained from RC patients (n = 25) before treatment, after preoperative chemotherapy (3 courses according to the XELOX scheme), 10-15 days after surgery, and every 3 months during 12 months of dynamic observation. The methylation level of LINE-1, SEPTIN9, and IKZF1 in the csb-cfDNA was evaluated by quantitative methyl-specific PCR. RESULTS: The LINE-1 methylation level in the csb-cfDNA increased 1.6 times in RC patients after chemotherapy and 3 times after tumor resection versus methylation level before therapy. The SEPTIN9 gene methylation level in the csb-cfDNA decreased by 1.7 times in RC patients after chemotherapy and by 2.3 times after tumor resection compared with the values before the treatment. The IKZF1 gene methylation level decreased by 2 times in RC patients after combined therapy. Notably, all patients with relapses (n = 5) showed an increase in methylation level for the SEPTIN9 and IKZF1 genes and a decrease of methylation level for the LINE-1 elements by 2 times or more in comparison with the level 10-15 days after surgery. There were no changes in the circulating SEPTIN9, IKZF1, and LINE-1 methylation levels during the 12-month follow-up period after the combined therapy of RC patients (n = 20) without relapses. CONCLUSION: The results indicate that SEPTIN9, IKZF1, and LINE-1 methylation levels in the csb-cfDNA are potential markers of the effectiveness of antitumor therapy and early detection of relapse in RC patients.


Assuntos
Biomarcadores Tumorais , Metilação de DNA , Fator de Transcrição Ikaros , Elementos Nucleotídeos Longos e Dispersos , Neoplasias Retais , Septinas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Septinas/genética , Septinas/sangue , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Idoso , Neoplasias Retais/sangue , Neoplasias Retais/terapia , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/sangue , Elementos Nucleotídeos Longos e Dispersos/genética , Prognóstico , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
8.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892289

RESUMO

Familial Mediterranean fever (FMF) is a systemic autoinflammatory disorder caused by inherited mutations in the MEFV (Mediterranean FeVer) gene, located on chromosome 16 (16p13.3) and encoding the pyrin protein. Despite the existing data on MEFV mutations, the exact mechanism of their effect on the development of the pathological processes leading to the spontaneous and recurrent autoinflammatory attacks observed in FMF, remains unclear. Induced pluripotent stem cells (iPSCs) are considered an important tool to study the molecular genetic mechanisms of various diseases due to their ability to differentiate into any cell type, including macrophages, which contribute to the development of FMF. In this study, we developed iPSCs from an Armenian patient with FMF carrying the M694V, p.(Met694Val) (c.2080A>G, rs61752717) pathogenic mutation in exon 10 of the MEFV gene. As a result of direct differentiation, macrophages expressing CD14 and CD45 surface markers were obtained. We found that the morphology of macrophages derived from iPSCs of a patient with the MEFV mutation significantly differed from that of macrophages derived from iPSCs of a healthy donor carrying the wild-type MEFV gene.


Assuntos
Diferenciação Celular , Febre Familiar do Mediterrâneo , Células-Tronco Pluripotentes Induzidas , Macrófagos , Mutação , Pirina , Humanos , Pirina/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/patologia , Macrófagos/metabolismo , Diferenciação Celular/genética , Masculino
9.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791375

RESUMO

The presence of molecular mutations in colorectal cancer (CRC) is a decisive factor in selecting the most effective first-line therapy. However, molecular analysis is routinely performed only in a limited number of patients with remote metastases. We propose to use tissue stiffness as a marker of the presence of molecular mutations in CRC samples. For this purpose, we applied compression optical coherence elastography (C-OCE) to calculate stiffness values in regions corresponding to specific CRC morphological patterns (n = 54). In parallel to estimating stiffness, molecular analysis from the same zones was performed to establish their relationships. As a result, a high correlation between the presence of KRAS/NRAS/BRAF driver mutations and high stiffness values was revealed regardless of CRC morphological pattern type. Further, we proposed threshold stiffness values for label-free targeted detection of molecular alterations in CRC tissues: for KRAS, NRAS, or BRAF driver mutation-above 803 kPa (sensitivity-91%; specificity-80%; diagnostic accuracy-85%), and only for KRAS driver mutation-above 850 kPa (sensitivity-90%; specificity-88%; diagnostic accuracy-89%). To conclude, C-OCE estimation of tissue stiffness can be used as a clinical diagnostic tool for preliminary screening of genetic burden in CRC tissues.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Técnicas de Imagem por Elasticidade , GTP Fosfo-Hidrolases , Mutação , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico , Técnicas de Imagem por Elasticidade/métodos , Biomarcadores Tumorais/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , GTP Fosfo-Hidrolases/genética , Feminino , Masculino , Elasticidade , Idoso , Proteínas de Membrana/genética , Pessoa de Meia-Idade
10.
Front Nutr ; 11: 1388492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812942

RESUMO

Introduction: This study focuses on the assessment of extra virgin olive-oil and olive fruit-based formulations enriched with natural antioxidants as potential nutritional supplements for alleviating symptoms and long-term consequences of illnesses whose molecular pathophysiology is affected by oxidative stress and inflammation, such as Alzheimer's disease (AD). Methods: Besides evaluating cell viability and proliferation capacity of human hepatocellular carcinoma HepG2 cells exposed to formulations in culture, hepatotoxicity was also considered as an additional safety measure using quantitative real-time PCR on RNA samples isolated from the cell cultures and applying approaches of targeted molecular analysis to uncover potential pathway effects through gene expression profiling. Furthermore, the formulations investigated in this work contrast the addition of natural extract with chemical forms and evaluate the antioxidant delivery mode on cell toxicity. Results: The results indicate minimal cellular toxicity and a significant beneficial impact on metabolic molecular pathways in HepG2 cell cultures, thus paving the way for innovative therapeutic strategies using olive-oil and antioxidants in dietary supplements to minimize the long-term effects of oxidative stress and inflammatory signals in individuals being suffered by disorders like AD. Discussion: Overall, the experimental design and the data obtained support the notion of applying innovative molecular methodologies and research techniques to evidently advance the delivery, as well as the scientific impact and validation of nutritional supplements and dietary products to improve public health and healthcare outcomes.

11.
Biochim Biophys Acta Gen Subj ; 1868(7): 130616, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621596

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a human DNA repair protein. It is a member of the phospholipase D family based on structural similarity. TDP1 is a key enzyme of the repair of stalled topoisomerase 1 (TOP1)-DNA complexes. Previously, with the CRISPR/Cas9 method, we obtained HEK293A cells with a homozygous knockout of the TDP1 gene and used the TDP1 knockout cells as a cellular model for studying mechanisms of action of an anticancer therapy. In the present work, we hypothesized that the TDP1 knockout would alter the expression of DNA repair-related genes. By transcriptomic analysis, we investigated for the first time the effect of the TDP1 gene knockout on genes' expression changes in the human HEK293A cell line. We obtained original data implying a role of TDP1 in other processes besides the repair of the DNA-TOP1 complex. Differentially expressed gene analysis revealed that TDP1 may participate in cell adhesion and communication, spermatogenesis, mitochondrial function, neurodegeneration, a cytokine response, and the MAPK signaling pathway.


Assuntos
Sistemas CRISPR-Cas , Diester Fosfórico Hidrolases , Humanos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Células HEK293 , Técnicas de Inativação de Genes/métodos , Transcriptoma/genética , Perfilação da Expressão Gênica , Reparo do DNA/genética
13.
Biochem Biophys Res Commun ; 715: 150008, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685186

RESUMO

In the last decade, much attention was given to the study of physiological amyloid fibrils. These structures include A-bodies, which are the nucleolar fibrillar formations that appear in the response to acidosis and heat shock, and disassemble after the end of stress. One of the proteins involved in the biogenesis of A-bodies, regardless of the type of stress, is Von-Hippel Lindau protein (VHL). Known also as a tumor suppressor, VHL is capable to form amyloid fibrils both in vitro and in vivo in response to the environment acidification. As with most amyloidogenic proteins fusion with various tags is used to increase the solubility of VHL. Here, we first performed AFM-study of fibrils formed by VHL protein and by VHL fused with GST-tag (GST-VHL) at acidic conditions. It was shown that formed by full-length VHL fibrils are short heterogenic structures with persistent length of 2400 nm and average contour length of 409 nm. GST-tag catalyzes VHL amyloid fibril formation, superimpose chirality, increases length and level of hierarchy, but decreases rigidity of amyloid fibrils. The obtained data indicate that tagging can significantly affect the fibrillogenesis of the target protein.


Assuntos
Amiloide , Glutationa Transferase , Proteína Supressora de Tumor Von Hippel-Lindau , Amiloide/metabolismo , Amiloide/química , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Humanos , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Microscopia de Força Atômica
14.
Front Insect Sci ; 4: 1360320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638680

RESUMO

In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information from Drosophila melanogaster and other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.

15.
Biomedicines ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38672099

RESUMO

Endoplasmic reticulum (ER) stress is involved in the pathogenesis of many human diseases, such as cancer, type 2 diabetes, kidney disease, atherosclerosis and neurodegenerative diseases, in particular Parkinson's disease (PD). Since there is currently no treatment for PD, a better understanding of the molecular mechanisms underlying its pathogenesis, including the mechanisms of the switch from adaptation in the form of unfolded protein response (UPR) to apoptosis under ER stress conditions, may help in the search for treatment methods. Genetically encoded biosensors based on fluorescent proteins are suitable tools that facilitate the study of living cells and visualization of molecular events in real time. The combination of technologies to generate patient-specific iPSC lines and genetically encoded biosensors allows the creation of cell models with new properties. Using CRISPR-Cas9-mediated homologous recombination at the AAVS1 locus of iPSC with the genetic variant p.N370S (rs76763715) in the GBA1 gene, we created a cell model designed to study the activation conditions of the IRE1-XBP1 cascade of the UPR system. The cell lines obtained have a doxycycline-dependent expression of the genetically encoded biosensor XBP1-TagRFP, possess all the properties of human pluripotent cells, and can be used to test physical conditions and chemical compounds that affect the development of ER stress, the functioning of the UPR system, and in particular, the IRE1-XBP1 cascade.

16.
Biochemistry (Mosc) ; 89(3): 431-440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648763

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising agent for treatment of AML due to its specific apoptosis-inducing effect on tumor cells but not normal cells. However, emergence of resistance to TRAIL in the AML cells limits its potential as an antileukemic agent. Previously, we revealed increase in the resistance of the human AML THP-1 cells to the TRAIL-induced death during their LPS-dependent proinflammatory activation and in the in vitro model of LPS-independent proinflammatory activation - in a long-term high-density cell culture. In this study, we investigated mechanisms of this phenomenon using Western blot analysis, caspase 3 enzymatic activity analysis, quantitative reverse transcription-PCR, and flow cytometry. The results showed that the increased resistance to the TRAIL-induced cell death of AML THP-1 cells during their pro-inflammatory activation is associated with the decrease in the surface expression of the proapoptotic receptors TRAIL-R1/DR4 and TRAIL-R2/DR5, as well as with the increased content of members of the IAPs family - Livin and cIAP2. The results of this article open up new insights into the role of inflammation in formation of the resistance of AML cells to the action of mediators of antitumor immunity, in particular TRAIL.


Assuntos
Apoptose , Leucemia Mieloide Aguda , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Apoptose/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Células THP-1 , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Caspase 3/metabolismo
17.
Front Immunol ; 15: 1326753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481999

RESUMO

The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority.


Assuntos
Glioblastoma , Glioma , Humanos , Prognóstico , Terapia de Imunossupressão , Células Matadoras Naturais , Inflamação
18.
J Neurooncol ; 168(1): 57-67, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38489149

RESUMO

The purpose of this prospective pilot study was to evaluate the feasibility and effects of cognitive-motor intervention on the cognitive and motor abilities of pediatric survivors of posterior fossa tumors. The study involved patients aged 7 to 18 years with cognitive deficits who had completed primary treatment for posterior fossa tumors. 25 participants (Mage=11.3 ± 2.93, 64% male; 17 medulloblastoma, 1 ependymoma, 1 desmoplastic medulloblastoma, 6 piloid astrocytoma; 22 in remission (Mmonths =45), 3 in stabilization (Mmonths=49)) were recruited from the Research Institute for Brain Development and Peak Performance. The intervention consisted of two phases with a 3-month break for home training, and a total duration of 6 months. Each phase lasted 7 weeks and included two assessment procedures (pre- and post-intervention) and 10 training sessions over a period of 5 weeks (two 3-hour sessions per week). At baseline and pre- and post-intervention, all participants underwent a battery of cognitive and motor tests. Each training session included gross motor training (GMT), graphomotor training (GT), and cognitive-motor training (CMT). Statistical analysis was performed using the Friedman test for repeated measures and post-hoc Durbin-Conover test. The results indicated significant improvements in visuospatial working memory, visual attention, eye-hand coordination, semantic verbal fluency, auditory-motor synchronization, reaction time, and a decrease in the rate of ataxia. These improvements remained stable even in the absence of direct intervention. The findings demonstrate positive effects and feasibility of the intervention and suggest the need for further research in this area including randomized controlled feasibility studies with a larger sample.


Assuntos
Sobreviventes de Câncer , Neoplasias Infratentoriais , Humanos , Masculino , Projetos Piloto , Criança , Feminino , Neoplasias Infratentoriais/terapia , Neoplasias Infratentoriais/psicologia , Adolescente , Sobreviventes de Câncer/psicologia , Estudos Prospectivos , Estudos de Viabilidade
19.
Cell Rep Med ; 5(3): 101469, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508137

RESUMO

Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.


Assuntos
Carcinoma Hepatocelular , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/patologia , Terapia Baseada em Transplante de Células e Tecidos , Proteínas de Choque Térmico HSP40/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética
20.
Front Immunol ; 15: 1326757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390330

RESUMO

Despite significant advances in our knowledge regarding the genetics and molecular biology of gliomas over the past two decades and hundreds of clinical trials, no effective therapeutic approach has been identified for adult patients with newly diagnosed glioblastoma, and overall survival remains dismal. Great hopes are now placed on combination immunotherapy. In clinical trials, immunotherapeutics are generally tested after standard therapy (radiation, temozolomide, and steroid dexamethasone) or concurrently with temozolomide and/or steroids. Only a minor subset of patients with progressive/recurrent glioblastoma have benefited from immunotherapies. In this review, we comprehensively discuss standard therapy-related systemic immunosuppression and lymphopenia, their prognostic significance, and the implications for immunotherapy/oncolytic virotherapy. The effectiveness of immunotherapy and oncolytic virotherapy (viro-immunotherapy) critically depends on the activity of the host immune cells. The absolute counts, ratios, and functional states of different circulating and tumor-infiltrating immune cell subsets determine the net immune fitness of patients with cancer and may have various effects on tumor progression, therapeutic response, and survival outcomes. Although different immunosuppressive mechanisms operate in patients with glioblastoma/gliomas at presentation, the immunological competence of patients may be significantly compromised by standard therapy, exacerbating tumor-related systemic immunosuppression. Standard therapy affects diverse immune cell subsets, including dendritic, CD4+, CD8+, natural killer (NK), NKT, macrophage, neutrophil, and myeloid-derived suppressor cell (MDSC). Systemic immunosuppression and lymphopenia limit the immune system's ability to target glioblastoma. Changes in the standard therapy are required to increase the success of immunotherapies. Steroid use, high neutrophil-to-lymphocyte ratio (NLR), and low post-treatment total lymphocyte count (TLC) are significant prognostic factors for shorter survival in patients with glioblastoma in retrospective studies; however, these clinically relevant variables are rarely reported and correlated with response and survival in immunotherapy studies (e.g., immune checkpoint inhibitors, vaccines, and oncolytic viruses). Our analysis should help in the development of a more rational clinical trial design and decision-making regarding the treatment to potentially improve the efficacy of immunotherapy or oncolytic virotherapy.


Assuntos
Glioblastoma , Glioma , Linfopenia , Terapia Viral Oncolítica , Adulto , Humanos , Terapia Viral Oncolítica/efeitos adversos , Glioblastoma/patologia , Prognóstico , Temozolomida/uso terapêutico , Estudos Retrospectivos , Imunoterapia/efeitos adversos , Terapia de Imunossupressão , Glioma/terapia , Esteroides/uso terapêutico , Linfopenia/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA