Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542378

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinogênese/patologia
2.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958547

RESUMO

Cholangiocarcinomas (CCAs) constitute a heterogeneous group of highly malignant epithelial tumors arising from the biliary tree. This cluster of malignant tumors includes three distinct entities, the intrahepatic, perihilar, and distal CCAs, which are characterized by different epidemiological and molecular backgrounds, as well as prognosis and therapeutic approaches. The higher incidence of CCA over the last decades, the late diagnostic time that contributes to a high mortality and poor prognosis, as well as its chemoresistance, intensified the efforts of the scientific community for the development of novel diagnostic tools and therapeutic approaches. Extracellular vesicles (EVs) comprise highly heterogenic, multi-sized, membrane-enclosed nanostructures that are secreted by a large variety of cells via different routes of biogenesis. Their role in intercellular communication via their cargo that potentially contributes to disease development and progression, as well as their prospect as diagnostic biomarkers and therapeutic tools, has become the focus of interest of several current studies for several diseases, including CCA. The aim of this review is to give a rundown of the current knowledge regarding the emerging role of EVs in cholangiocarcinogenesis and their future perspectives as diagnostic and therapeutic tools.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Vesículas Extracelulares , Humanos , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/terapia , Colangiocarcinoma/etiologia , Comunicação Celular , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/terapia , Neoplasias dos Ductos Biliares/etiologia
3.
Redox Biol ; 57: 102477, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36155342

RESUMO

Redox imbalance and oxidative stress have emerged as generative causes of the structural and functional degradation of red blood cells (RBC) that happens during their hypothermic storage at blood banks. The aim of the present study was to examine whether the antioxidant enhancement of stored RBC units following uric (UA) and/or ascorbic acid (AA) supplementation can improve their storability as well as post-transfusion phenotypes and recovery by using in vitro and animal models, respectively. For this purpose, 34 leukoreduced CPD/SAGM RBC units were aseptically split in 4 satellite units each. UA, AA or their mixture were added in the three of them, while the fourth was used as control. Hemolysis as well as redox and metabolic parameters were studied in RBC units throughout storage. The addition of antioxidants maintained the quality parameters of stored RBCs, (e.g., hemolysis, calcium homeostasis) and furthermore, shielded them against oxidative defects by boosting extracellular and intracellular (e.g., reduced glutathione; GSH) antioxidant powers. Higher levels of GSH seemed to be obtained through distinct metabolic rewiring in the modified units: methionine-cysteine metabolism in UA samples and glutamine production in the other two groups. Oxidatively-induced hemolysis, reactive oxygen species accumulation and membrane lipid peroxidation were lower in all modifications compared to controls. Moreover, denatured/oxidized Hb binding to the membrane was minor, especially in the AA and mix treatments during middle storage. The treated RBC were able to cope against pro-oxidant triggers when found in a recipient mimicking environment in vitro, and retain control levels of 24h recovery in mice circulation. The currently presented study provides (a) a detailed picture of the effect of UA/AA administration upon stored RBCs and (b) insight into the differential metabolic rewiring when distinct antioxidant "enhancers" are used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA